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1 Introduction

This is a derivation of the equations of motion for a double pendulum where we regard the pendulums as rigid bodies.
In an alternate double pendulum model, the so-called “ideal double pendulum”, the two pendulums are modelled
as massless rods with a point mass at the end of each pendulum rod. The present rigid body model of the double
pendulum allows for more realistic configurations, because the pendulums can have any distribution of mass and can
be connected together at any point. The mass distribution is reflected in the rotational inertia of each pendulum.
By contrast in the ideal double pendulum model, the rotational inertia is zero for each pendulum and the connection
must be at the end points of the massless rods.

Please refer to figure 1 below.

Let i be the unit vector along the x axis, and let j be the unit vector along the y axis. We regard y as increasing
upwards (this is the usual mathematical convention, as opposed to computer graphics systems which often have y
increasing downwards).

The fixed pivot, which we name pivot 1, is at location P1. Pivot 2 is the moving pivot point connecting the two
pendulums at location P2.

Let pendulum 1 be the upper pendulum. It is connected to a fixed location at pivot 1, and connected to the lower
pendulum at pivot 2.
Let X1 = x1i + y1j be the location of the center of mass of pendulum 1.
Let R1 be the vector from pivot 1 to the center of mass of pendulum 1, with length R1.
Let θ1 be the angle at pivot 1 between R1 and the downward vertical position.
Let L1 be the vector from pivot 1 to pivot 2, with length L1.
Let φ be the angle from vector R1 to L1. Note that φ is a constant.

Let pendulum 2 be the lower pendulum. It is connected to the upper pendulum at pivot 2.
Let X2 = x2i + y2j be the location of the center of mass of pendulum 2.
Let R2 be the vector from pivot 2 to the center of mass of pendulum 2, with length R2.
Let θ2 be the angle at pivot 2 between R2 and the downward vertical position.

Let m1, m2 be the mass of pendulum 1 and 2 respectively.
Let I1, I2 be the rotational inertia about the center of mass of pendulum 1 and 2 respectively.
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Figure 1: Rigid Body Double Pendulum Model

2 Kinematics

We have the following relationships just from the geometry of the double pendulum, without using any information
about forces.

R1 = R1 sin(θ1)i−R1 cos(θ1)j

R2 = R2 sin(θ2)i−R2 cos(θ2)j

L1 = L1 sin(θ1 + φ)i− L1 cos(θ1 + φ)j

X1 = R1

x1 = R1 sin(θ1)

y1 = −R1 cos(θ1)

X2 = L1 + R2

x2 = L1 sin(θ1 + φ) +R2 sin(θ2)

y2 = −L1 cos(θ1 + φ) −R2 cos(θ2)

Take the first derivative with respect to time to get velocity.

X′
1 = R′

1

x′1 = θ′1R1 cos(θ1)
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y′1 = θ′1R1 sin(θ1)

X′
2 = L′

1 + R′
2

x′2 = θ′1L1 cos(θ1 + φ) + θ′2R2 cos(θ2)

y′2 = θ′1L1 sin(θ1 + φ) + θ′2R2 sin(θ2)

Take the second derivative with respect to time to get acceleration.

X′′
1 = R′′

1

x′′1 = −θ′21 R1 sin(θ1) + θ′′1R1 cos(θ1) (1)

y′′1 = θ′21 R1 cos(θ1) + θ′′1R1 sin(θ1) (2)

X′′
2 = L′′

1 + R′′
2

x′′2 = −θ′21 L1 sin(θ1 + φ) + θ′′1L1 cos(θ1 + φ) − θ′22 R2 sin(θ2) + θ′′2R2 cos(θ2) (3)

y′′2 = θ′21 L1 cos(θ1 + φ) + θ′′1L1 sin(θ1 + φ) + θ′22 R2 cos(θ2) + θ′′2R2 sin(θ2) (4)

3 Forces

Let T1 = T1xi + T1yj be the force vector operating on pendulum 1 at pivot 1.
Let T2 = T2xi + T2yj be the force vector operating on pendulum 1 at pivot 2. Then by Newton’s law of equal and
opposite reaction, −T2 is the force vector operating on pendulum 2 at pivot 2.

From Newton’s laws of motion we can write the following force equations:

m1X1
′′ = T1 + T2 −m1gj

m1x
′′
1 = T1x + T2x (5)

m1y
′′
1 = T1y + T2y −m1g (6)

I1θ
′′
1 = (−R1) ×T1 + (L1 −R1) ×T2

= −(R1 sin(θ1)T1y +R1 cos(θ1)T1x)

+ (L1 sin(θ1 + φ) −R1 sin(θ1))T2y + (L1 cos(θ1 + φ) −R1 cos(θ1))T2x (7)

m2X2
′′ = −T2 −m2gj

m2x
′′
2 = −T2x (8)

m2y
′′
2 = −T2y −m2g (9)

I2θ
′′
2 = (−R2) × (−T2) = R2 sin(θ2)T2y +R2 cos(θ2)T2x (10)

To derive these force equations we used Newton’s law of motion F = ma and the rotational version for angular
torque Iθ′′ = τ . For more about how to calculate the torque see http://www.myphysicslab.com/collision.html.
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4 Equations of Motion

Substitute the four equations (1) thru (4) into the six equations (5) thru (10) to eliminate the unknowns x′′1 , y′′1 , x′′2 ,
y′′2 . This gives us modified versions of the six equations (5) thru (10) with six unknowns: T1x, T2x, T1y, T2y, θ′′1 ,
θ′′2 . We then solve for θ′′1 , θ′′2 and eliminate the other four unknowns. See the accompanying Mathematica notebook
Rigid Double Pendulum Algebra.nb for the calculations.

θ′′1 = −
(
2gm1R1(I2 +m2R

2
2) sin(θ1) + L1m2

(
g(2I2 +m2R

2
2) sin(θ1 + φ)+

R2

(
gm2R2 sin(θ1 − 2θ2 + φ) + 2(θ′22 (I2 +m2R

2
2) + θ′21 L1m2R2 cos(θ1 − θ2 + φ)) sin(θ1 − θ2 + φ)

)))
/(

2I2L
2
1m2 + 2I2m1R

2
1 + L2

1m
2
2R

2
2 + 2m1m2R

2
1R

2
2 + 2I1(I2 +m2R

2
2)− L2

1m
2
2R

2
2 cos(2(θ1 − θ2 + φ))

)
(11)

θ′′2 =
(
m2R2

(
− (g(2I1 + L2

1m2 + 2m1R
2
1) sin(θ2))+

L1

(
gm1R1 sin(θ2 − φ) + 2θ′21 (I1 + L2

1m2 +m1R
2
1) sin(θ1 − θ2 + φ)+

θ′22 L1m2R2 sin(2(θ1 − θ2 + φ)) + gm1R1 sin(2θ1 − θ2 + φ) + gL1m2 sin(2θ1 − θ2 + 2φ)
)))

/(
2I2L

2
1m2 + 2I2m1R

2
1 + L2

1m
2
2R

2
2 + 2m1m2R

2
1R

2
2 + 2I1(I2 +m2R

2
2)− L2

1m
2
2R

2
2 cos(2(θ1 − θ2 + φ))

)
(12)

Do these equations match the ideal double pendulum equations? Yes.

In the ideal double pendulum there are two point masses at the end of each pendulum. This corresponds to setting L1 = R1,
φ = 0, and having rotational inertia be zero for both pendulums. If we substitute these values into the above equations, we
do indeed get the ideal double pendulum equations (see the Mathematica document).
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