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Abstract

The λ–ω reaction–diffusion system is investigated. Spectral transform
methods are used to numerically integrate the system. Filtered and un-
filtered spectral methods are compared. Various initial conditions are ex-
amined including rectangular cells, and one or two-armed spirals. Stable
rotating spiral waves are demonstrated. The effect of changing parame-
ters in the reaction–diffusion system is also investigated. In particular, we
look for where the solution becomes unstable and chaotic.

Contents

1 Prolegomenon 2

2 Theoretical Background 3

2.1 Spectral Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Filtered Spectral Transform . . . . . . . . . . . . . . . . . . . . . 3

3 Algorithm Implementation and Development 4

3.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Spectral Transform Implementation . . . . . . . . . . . . . . . . 5

3.3 Filtered Spectral Implementation . . . . . . . . . . . . . . . . . . 6

4 Computational Results 6

4.1 Running Time Comparison . . . . . . . . . . . . . . . . . . . . . 7

1



4.2 Varied Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Effect of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Summary and Conclusions 20

A MATLAB functions used 20

B MATLAB code 21

B.1 fr.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.2 rd2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.3 rd2rhs.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.4 rd3.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.5 rd3rhs.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1 Prolegomenon

We consider the λ–ω reaction–diffusion system in two dimensions which is de-
fined by

Ut = λ(A)U − ω(A)V + D1∇2U (1a)

Vt = ω(A)U + λ(A)V + D2∇2V (1b)

where A2 = U2 +V 2 and ∇2 = ∂2
x +∂2

y . U and V represent two different species
of chemicals that react with each other and diffuse on their own. The diffusion
term in equation (1a) is D1∇2U . The reaction terms are the remaining terms
on the right hand side.

The λ–ω functions we will consider are

λ(A) = ε− aA2 (2)

ω(A) = c− βA2 (3)

where all the parameters ε, a, c, β are greater than zero. We will investigate the
effects on the system of modifying these four parameters.

The system (1) will be numerically solved using the spectral transform method,
and also a filtered spectral transform method. These two methods will be com-
pared as to running time.
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2 Theoretical Background

2.1 Spectral Transform

The Fourier transform and its inverse are defined as

f̂(k) =
1√
2π

∫ ∞

−∞
eikxf(x) dx (4)

f(x) =
1√
2π

∫ ∞

−∞
e−ikxf̂(k) dk (5)

We will denote the Fourier transform in x of a function f by f̂ . The key relation
is among derivatives of functions. The general result for the n-th derivative of
a function f is

f̂ (n) = (−ik)nf̂ (6)

where k is the wave number. To numerically integrate equation (1a) we begin
by taking the Fourier transform in x.

Ût = λ̂(A)U − ω̂(A)V −D1k
2
xÛ + D1∂̂2

yU (7)

We denote the Fourier transform in y of f by f̃ . Then taking the Fourier
transform in y of equation (7) gives

˜̂
Ut =

˜̂
λ(A)U − ˜̂

ω(A)V −D1(k2
x + k2

y) ˜̂
U (8)

Similarly, taking the Fourier transform in x and y of equation (1b) gives us

˜̂
Vt =

˜̂
ω(A)U +

˜̂
λ(A)V −D2(k2

x + k2
y) ˜̂

V (9)

Equations (8) and (9) can now be solved together using a Runge-Kutta ODE
(ordinary differential equation) solver. We advance the equations in time while

the variables ˜̂
U and ˜̂

V remain in the spectral domain.

2.2 Filtered Spectral Transform

The filtered spectral transform uses a trick from the theory of ordinary differ-
ential equations. We first write equation (8) as

˜̂
Ut + (D1(k2

x + k2
y)− ε) ˜̂

U = −a
˜̂
A2U − c

˜̂
V + β

˜̂
A2V (10)

Next we multiply by the integrating factor e(D1(k
2
x+k2

y)−ε)t

˜̂
Ute

(D1(k
2
x+k2

y)−ε)t + (D1(k2
x + k2

y)− ε) ˜̂
Ue(D1(k

2
x+k2

y)−ε)t =

e(D1(k
2
x+k2

y)−ε)t (−a
˜̂
A2U − c

˜̂
V + β

˜̂
A2V ) (11)
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We recognize the left hand side as the derivative of a product

( ˜̂
Ue(D1(k

2
x+k2

y)−ε)t)t = e(D1(k
2
x+k2

y)−ε)t (−a
˜̂
A2U − c

˜̂
V + β

˜̂
A2V ) (12)

Define the variable G by

˜̂
G = e(D1(k

2
x+k2

y)−ε)t ˜̂
U (13)

Then equation (12) becomes

˜̂
Gt = e(D1(k

2
x+k2

y)−ε)t (−a
˜̂
A2U − c

˜̂
V + β

˜̂
A2V ) (14)

We have solved explicitly for the linear, constant coefficient terms. This removes
the numerical stiffness of these terms.

A similar treatment for equation (9) leads to the new variable H defined by

˜̂
H = e(D2(k

2
x+k2

y)−ε)t ˜̂
V (15)

and the following differential equation

˜̂
Ht = e(D2(k

2
x+k2

y)−ε)t (c ˜̂
U − β

˜̂
A2U − a

˜̂
A2V ) (16)

We can now use a Runge-Kutta ODE solver to advance equations (14) and (16)
in time. At each time step, we must update the values of U and V used in the
right hand sides of these equations. We can use equations (13) and (15) to find
U and V from the current value of G and H.

3 Algorithm Implementation and Development

3.1 Initial Conditions

A dynamic reaction can be sustained for the λ–ω reaction diffusion system when
U and V have sinusoidal profiles that are offset in space. Here are the initial
conditions that we consider: We consider the following initial conditions for ω

• One armed spiral.

• Two armed spiral.

• Square grids.

• Parallel rows.
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Let L be the width and height of the two dimensional space over which U and
V are defined. Let x, y be vectors of discretized values from −L/2 to L/2. We
can set up sinusoidal parallel rows by

U = sin(mπx/L) (17)
V = cos(mπx/L) (18)

where m controls the number of rows.

A sinusoidal wave on square grid is defined by

U = sin(mπx/L) sin(mπy/L) (19)
V = cos(mπx/L) cos(mπy/L) (20)

where m controls the number of squares.

A spiral can be defined by

U = tanh(
√

x2 + y2) cos(m Arg(x + iy)−
√

x2 + y2) (21)

V = tanh(
√

x2 + y2) sin(m Arg(x + iy)−
√

x2 + y2) (22)

where m controls the number of spiral arms.

3.2 Spectral Transform Implementation

The spectral transform for the reaction–diffusion system is implemented by the
Matlab file rd2.m. Various parameters can be set near the top of the file such
as

• Which initial condition to use.

• Values of parameters ε, a, c, β

• Diffusion factor D1.

• Number of grid points N .

• Time step ∆t.

• How long to run the simulation.

• Time between displayed frames.

The Matlab code in rd2.m is mostly a straightforward implementation of the
theory given in Section 2.1. We begin by creating U and V according to the
initial conditions as outlined in Section 3.1. We then apply Fourier transform
in x and y to get ˜̂

U and ˜̂
V . We form the matrices ˜̂

U and ˜̂
V into column vectors
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and concatenate them to form a single column vector ˜̂
Z. Then equations (8)

and (9) define the right hand side for the Runge-Kutta ode23 solver. The right
hand side is coded as the Matlab file rd2_rhs.m.

Note that we need to inverse Fourier transform within the right hand side to
recover U and V from the frequency domain so that we can calculate the non-
linear portions of equations (8) and (9). We then re-apply the Fourier transform
to the result, since the equations are being solved in the frequency domain.

We make an adjustment to Matlab’s fft function as follows. As part of fft,
Matlab multiplies the result by n, the number of data points. To undo this effect
we divide by n after each fft, otherwise working in the frequency domain the
right hand side of equations (8) and (9) become very large and so ode23 takes
extremely small time steps. And we multiply by n before the inverse Fourier
transform ifft.

To ensure that U and V are real data, we use the function real on the results
of ifft.

3.3 Filtered Spectral Implementation

The spectral transform for the reaction–diffusion system is implemented by the
Matlab file rd3.m. The code is very similar to that for the non-filtered version,
and so most of the comments in Section 3.2 apply. The difference is that the
right hand side is defined by equations (14) and (16).

After creating U and V according to the initial conditions as outlined in Section
3.1 we apply the Fourier transform and use equations (13) and (15) to arrive

at initial values for ˜̂
G and ˜̂

H. These are concatenated into column vectors to
form a single column vector ˜̂

Z. Then equations (14) and (16) define the right
hand side for the Runge-Kutta ode23 solver. The right hand side is coded as
the Matlab file rd3_rhs.m.

Within the right hand side function we need to inverse Fourier transform and
use equations (13) and (15) to recover U and V from the frequency domain so
that we can calculate the non-linear portions of equations (14) and (16). We
then re-apply the Fourier transform and inverses of equations (13) and (15) since
the equations are being solved in the filtered frequency domain.

4 Computational Results

The website www.MyPhysicsLab.com has some of these results available to view
as movies. Look for the icon on the first page labeled “Reaction–Diffusion
Simulations”.
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4.1 Running Time Comparison

The two algorithms, spectral transform and filtered spectral, were compared
with the same initial conditions. The initial condition was for a one-armed
spiral, and the code was run to time t = 20. The parameters were D = 0.1, ε =
1, a = 1, c = 0, β = 1. The time step used was ∆t = 0.5. The running times as
measured by cputime are shown below.

method cputime (secs)

spectral transform 215
filtered spectral 194

Figure 1 shows the last frame for each run. It is apparent that there is not a
significant difference, so we judge the two methods as having roughly the same
accuracy.

Note that we had to set the ode23 absolute tolerance to infinity for the filtered
spectral method, so that only relative tolerance was used. Otherwise the filtered
spectral method ran over 4 times slower than the regular spectral method.

Here is why we must set absolute tolerance to infinity: the maximum absolute
value of the right-hand side function was observed during the two runs (filtered
and regular). While the regular spectral method remained at about 0.3, the
filtered spectral method grew by about 5% each invocation, which rapidly be-
comes a huge number. With the default absolute tolerance setting of 0.001 the
ode23 method must take smaller and smaller steps as the right hand side gets
larger.

The regular spectral method was used for the remainder of the investigation.

4.2 Varied Initial Conditions

Various initial conditions were described in Section 3.1. The results from these
initial conditions are shown in this section. The regular spectral transform was
used for all of these computations. The diffusion was set to D1 = D2 = 0.1 in
each case. The other parameter settings were ε = 1, a = 1, c = 0, β = 1. The
time step used with ode23 was ∆t = 0.5 unless noted.

Figure 2 shows a one-armed spiral rotating counter-clockwise. This pattern
rotates indefinitely without decaying (out to at least time t = 500). The one
armed spiral initial condition has some sharp transitions at the boundaries, i.e.
it is not smooth at the periodic boundaries. But the diffusion quickly smooths
out these sharp edges.

If the one-armed spiral initial condition is scaled so that U varies between −0.2
and 0.2, it rapidly grows to a range of −1 to 1. Similarly, if it is scaled to vary
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(a) Regular Spectral
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(b) Filtered Spectral

Figure 1: Comparison of last frames (t = 20) from regular spectral and filtered
spectral methods. Parameters were D = 0.1, ε = 1, a = 1, c = 0, β = 1.
Amplitude ranges from −1 (blue) to 1 (red).

between −2 and 2, then it rapidly shrinks to the range of −1 to 1. So it seems
that an amplitude range of −1 to 1 is stable for the given parameter settings.

Figure 3 shows a two-armed spiral rotating counter-clockwise. This pattern
rotates indefinitely.

Figure 4 shows a square grid with a smooth sine function. The resulting patterns
oscillate indefinitely at a rapid rate without decaying. A time step of ∆t = 0.25
was used due to the very rapid oscillation.

Figure 5 shows an initial condition of parallel sinusoidal rows. These move left
at a constant velocity indefinitely.
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(f) t = 7.5

Figure 2: One armed spiral initial condition rotates counter-clockwise. Param-
eters were D = 0.1, ε = 1, a = 1, c = 0, β = 1. Amplitude ranges from −1
(blue) to 1 (red).
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(f) t = 10

Figure 3: Two armed spiral initial condition rotates counter-clockwise. Param-
eters were D = 0.1, ε = 1, a = 1, c = 0, β = 1. Amplitude ranges from −1
(blue) to 1 (red).
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Figure 4: Square grid at times t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5. Parameters were
D = 0.1, ε = 1, a = 1, c = 0, β = 1. Amplitude ranges from −1 (blue) to 1
(red).
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(f) t = 5

Figure 5: Parallel rows initial condition. Parameters were D = 0.1, ε = 1, a =
1, c = 0, β = 1. Amplitude ranges from −1 (blue) to 1 (red).

12



4.3 Effect of Parameters

We investigate the effect of modifying the parameters D, ε, a, c, β in equa-
tions (1), (2) and (3). The single-arm spiral is the initial condition in each case.
The method used is to regard the settings D = 0.1, ε = 1, a = 1, c = 0, β = 1
as the default, and modify a single parameter to see the effects. The time step
used with ode23 was ∆t = 0.5 unless noted.

Figure 6 shows the effect of varying the diffusion parameter D (we have taken
D1 = D2 throughout and so just refer to D). The values used were D =
0.01, 0.04, 0.1, 0.2, 0.4, 0.8. The figure shows the state of the calculation at
time t = 20. Increasing diffusion causes the arms of the spiral to become fatter.
The direction or speed of the motion was not affected. At the highest diffusion
level, D = 0.8, the spiral pattern breaks up and an oscillating pattern similar
to that for the grid boxes (see Figure 4) takes over.

Figure 7 shows the effect of varying ε. The values of epsilon shown are ε =
0.1, 0.25, 0.5, 1.5, 2.5, 4.0. The figure shows the state of the calculation at time
t = 20. There are three effects from modifying ε.

1. The range of the solution rapidly changes, with small ε giving small ranges,
and high ε leading to larger ranges.

2. The speed of the rotation is greatly affected with low ε leading to low
rotation speeds, and high ε giving high rotation speeds.

3. The arms of the spiral become longer, thinner and wrap around more with
increasing ε. With decreasing ε the spiral arms become fatter and shorter.

Additionally, we can see a new spiral developing on the side for ε = 4.0, which
could lead to instability.

Figure 8 shows how chaos results from setting parameter a = 0.25. The effects
of modifying a are similar to those for modifying ε. Smaller a (less than 1)
leads to larger range, faster rotation, longer thinner spiral arms, and eventually
chaos. Larger a (greater than 1) leads to smaller range, slower rotation, fatter
shorter spiral arms.

Figure 9 shows that setting parameter c = 1.5 causes clockwise rotation instead
of the usual counter-clockwise rotation. The only effect of parameter c is to
change the rotation rate and direction. The size and shape of the spiral arms
is unaffected by changing c. As we increase c from 0 to 0.9, the rotation is
counter-clockwise and slows down. At c = 0.9 the rotation comes to a complete
halt and there is no motion. As c increases above 0.9 the rotation becomes
clockwise and increases in speed.

Figure 10 shows that chaos results from setting parameter β = 2.5. Decreasing
β from 1 to 0.1 slows the rotation, but has no effect on the shape of the spiral.
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Increasing β above 1 increases the rate of rotation and causes the spiral arms
to thin and wrap around the center. As β is increased further, unstable areas
appear and grow until there are only chaotic oscillations.
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(f) D = 0.8

Figure 6: Effect of varying diffusion parameter D. Frames shown are at time
t = 20. Amplitude ranges from −1 (blue) to 1 (red).
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(f) ε = 4.0 range = ±2.0

Figure 7: Effect of varying parameter ε. Frames shown are at time t = 20.
Color range for figures (a-c) is ±1. Color range for figures (e-f) is ±2.
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(f) t = 20

Figure 8: Chaos results from setting parameter a = 0.25. Parameters were
D = 0.1, ε = 1, a = 0.25, c = 0, β = 1. Amplitude ranges from −2 (blue) to 2
(red).
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(f) t = 7.5

Figure 9: Clockwise rotation results from setting parameter c = 1.5. Parameters
were D = 0.1, ε = 1, a = 1, c = 1.5, β = 1. Amplitude ranges from −1 (blue)
to 1 (red).
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(f) t = 20

Figure 10: Chaos results from setting parameter β = 2.5. Parameters were
D = 0.1, ε = 1, a = 1, c = 0, β = 2.5. Amplitude ranges from −1 (blue) to 1
(red).
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5 Summary and Conclusions

The λ–ω reaction–diffusion system was solved numerically with a variety of
initial conditions. Rotating one and two-armed spiral waves were observed.
Rectangular grids of cells led to a complex but regular oscillating behavior.
Simple sinusoidal rows produced constant linear motion. With the parameter
settings of D = 0.1, ε = 1, a = 1, c = 0, β = 1 all of these motions went on
indefinitely without decaying.

The regular and filtered spectral methods were compared. They had similar
accuracy and speed, though the filtered method was slightly faster. We would
expect the filtered method to be significantly faster if higher derivatives were
involved.

The effect of modifying the various parameters was examined with the one-
armed spiral initial condition. The effects included

• Changing the rate of rotation.

• Changing the direction of rotation.

• Making the spiral arms shorter and fatter, or longer and thinner.

• Changing the range of solution values.

Some parameters had a single effect, while others had a combination of several.
Unstable chaotic results were seen in two cases: a low value for a or a high value
for β.

A MATLAB functions used

fr.m A tool used to save frames of a movie to a .eps file.

rd2.m Calculates the time evolution of the reaction-diffusion system using reg-
ular spectral transform. Produces an .avi movie file.

rd2rhs.m The right hand side used by rd2.m in time stepping with the ode23
solver.

rd3.m Calculates the time evolution of the reaction-diffusion system using fil-
tered spectral transform. Produces an .avi movie file.

rd3rhs.m The right hand side used by rd3.m in time stepping with the ode23
solver.
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B MATLAB code

B.1 fr.m

function fr(mov,fn,fnam)
%mov=name of .avi file, fn=vector of frames to display
%fnam=file name to print frames to as color .eps files
%The frame number is appended to the file name.
%fr(’m1’,1+5*(0:5)) shows every 5th frame
F=aviread(mov);
for j=fn

figure(1)
[X,Map] = frame2im(F(j));
image(X)
drawnow

if nargin>=3
framest = num2str(j);
while(size(framest,2))<3,
framest = [’0’,framest];
end;

fname1 = [fnam framest ’.eps’];
print(’-depsc’,fname1);
fprintf(’print %s \n’,fname1);

else
pause(0.5)

end
end

B.2 rd2.m

%reaction-diffusion system
clear all; close all;
fixed_scale=1; %********
nx=2^6; %******
movey=1; %****** whether to make a movie
% note: turn off screen saver & power saving
%****** parameters
% e a c beta d1
p= [6.0 1.0 0.0 1.0 0.1];
%p=[p; 1.0 1.0 4.0 1.0 0.1];
init=’s’; %**** initial condition
num=55; %***** movie number
end_time=20; %*******
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scale_multiply=1; %********
delta_t=0.5; %****** time between frames

for k=1:size(p,1)
start_time = cputime;
clear F u v ut vt zt u2
e=p(k,1); a=p(k,2); c=p(k,3); beta=p(k,4);d1=p(k,5);
d2=d1;
ny=nx;
N=nx*ny;
Lx=20; Ly=20;
time=0;
frame=1;
global iter stp;
x2=linspace(-Lx/2,Lx/2,nx+1); x=x2(1:nx); %periodic BCs
y2=linspace(-Ly/2,Ly/2,ny+1); y=y2(1:ny);
% wave frequencies
kx=(2*pi/Lx)*[0:(nx/2 -1) (-nx/2):-1]’;
kx(1)=10^(-6);
ky=(2*pi/Ly)*[0:(ny/2 -1) (-ny/2):-1]’;
ky(1)=10^(-6);

% initial conditions

us=1;
vs=us;
fnam=[init int2str(num) ’.avi’];
fprintf(’movie %s, scale-multiply=%f, delta_t=%f\n’,...

fnam,scale_multiply,delta_t);
fprintf(’e=%f, a=%f, c=%f, beta=%f\n’,e,a,c,beta);
fprintf(’n=%i d1=%f d2=%f end time=%f\n’,nx,d1,d2,end_time);

% spirals
if init==’s’

[X,Y]=meshgrid(x,y);
m=1; % number of spirals
mag=1; % with mag=.2, it just grows to mag=1 quickly.
u=cos(m*angle(X+i*Y)-sqrt(X.^2+Y.^2));
u=mag*tanh(sqrt(X.^2+Y.^2)).*u;
v=sin(m*angle(X+i*Y)-sqrt(X.^2+Y.^2));
v=mag*tanh(sqrt(X.^2+Y.^2)).*v;

end

% rows
if init==’r’

m=2; % number of rows
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[X,Y]=meshgrid(x*(m*pi/Lx),y*(m*pi/Lx));
u=sin(m*X);
v=cos(m*X);

end

% boxes
if init==’b’

m=2; % number of boxes... even number for periodic BC
[X,Y]=meshgrid(x*(m*pi/Lx),y*(m*pi/Lx));
m=1; % number of rows
% try 6 secs for m=1
u=sin(m*X).*sin(m*Y);
v=cos(m*X).*cos(m*Y);

end

z_range = scale_multiply*[min(min(u)) max(max(u))];
figure(’doublebuffer’,’on’,’backingstore’,’on’);
h=figure(1);
%get(h,’Position’)
% bottom of screen is zero [left,bottom, width, height]
set(h,’Position’,[5 40 560 420]);

global Kx Ky
[Kx,Ky]=meshgrid(kx,ky);

% form u & v into vector to pass to ode23
ut=reshape(fft2(u)/N,N,1);
vt=reshape(fft2(v)/N,N,1);
zt=[ut;vt];
while 1

fprintf(’%4.1f ’,time);
if (mod(floor(time/delta_t),12)==0) & (time>0)

fprintf(’\n’);
end
% plot new solution
ut=reshape(zt(1:N),nx,ny);
u=real(ifft2(ut*N));
% pcolor doesn’t show last row or column, so add dummies.
u2 = [real(u); zeros(1,nx)];
u2 = [u2, zeros(ny+1,1)];
pcolor(u2);
if fixed_scale

caxis(z_range)
end
colorbar;shading flat;
drawnow;
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if movey
F(frame) = getframe;

end
frame=frame+1;
last_frame_time = time;
if time>=end_time

fprintf(’\nend time reached\n’);
break

end

[t,zsol]=ode23(’rd2_rhs’,[time,time+delta_t],zt,[],...
d1,d2,nx,ny,e,c,a,beta);

time=t(end);
% note: ’ gives complex conjugate, so use .’ instead
zt=zsol(end,:).’; %last row corresponds to current time

end
fprintf(’cputime = %f\n’,cputime - start_time);
if movey & frame>2

fprintf(’movie file %s\n’,fnam);
movie2avi(F,fnam)
num=num+1;
close all

end
end

B.3 rd2rhs.m

function rhs=rd2_rhs(t,zt,dummy,d1,d2,nx,ny,e,c,a,beta)
global Kx Ky
N=nx*ny;

ut=reshape(zt(1:N),nx,ny);
vt=reshape(zt(N+1:2*N),nx,ny);

% calc del^2 stuff (diffusion)
ud=-d1*(Kx.^2+Ky.^2).*ut;
vd=-d2*(Kx.^2+Ky.^2).*vt;
rhs=[reshape(ud,N,1); reshape(vd,N,1)];

% non-diffusion terms
u=reshape(real(ifft2(ut*N)),nx,ny);
v=reshape(real(ifft2(vt*N)),nx,ny);
A2=u.*u +v.*v;
lambda=e-a*A2;
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omega=c-beta*A2;
up=lambda.*u - omega.*v;
dn=omega.*u + lambda.*v;
up=reshape(fft2(up)/N,N,1);
dn=reshape(fft2(dn)/N,N,1);
rhs=rhs+[up;dn];
%fprintf(’max(rhs)=%f\n’,max(abs(rhs)));

B.4 rd3.m

%reaction-diffusion system
% Filtered pseudo-spectral technique.
clear all; close all;
fixed_scale=1; %********
d1=0.1; %********
nx=2^6; %******
movey=1; %****** whether to make a movie
%****** parameters
% note: turn off screen saver & power saving
% e a c beta
p= [1.0 1.0 0.0 1.0];
%p=[p; 1.0 1.0 0.0 1.0];
num=2; %***** movie number
end_time=20; %*******
scale_multiply=1; %********
delta_t=0.5; %****** time between frames

for k=1:size(p,1)
start_time = cputime;
clear F u v ut vt zt u2
e=p(k,1); a=p(k,2); c=p(k,3); beta=p(k,4);
ny=nx;
N=nx*ny;
Lx=20; Ly=20;
time=0;
frame=1;
global iter stp;
x2=linspace(-Lx/2,Lx/2,nx+1); x=x2(1:nx); %periodic BCs
y2=linspace(-Ly/2,Ly/2,ny+1); y=y2(1:ny);
% wave frequencies
kx=(2*pi/Lx)*[0:(nx/2 -1) (-nx/2):-1]’;
kx(1)=10^(-6);
ky=(2*pi/Ly)*[0:(ny/2 -1) (-ny/2):-1]’;
ky(1)=10^(-6);
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% initial conditions
fprintf(’movie %i, scale-multiply=%f, delta_t=%f\n’,...

num,scale_multiply,delta_t);
fprintf(’e=%f, a=%f, c=%f, beta=%f\n’,e,a,c,beta);
fprintf(’n=%i d1=%f end time=%f\n’,nx,d1,end_time);

% spirals
if 1

[X,Y]=meshgrid(x,y);
m=1; % number of spirals
mag=1; % with mag=.2, it just grows to mag=1 quickly.
u=cos(m*angle(X+i*Y)-sqrt(X.^2+Y.^2));
u=mag*tanh(sqrt(X.^2+Y.^2)).*u;
v=sin(m*angle(X+i*Y)-sqrt(X.^2+Y.^2));
v=mag*tanh(sqrt(X.^2+Y.^2)).*v;

end

% rows
if 0

m=2; % number of rows
[X,Y]=meshgrid(x*(m*pi/Lx),y*(m*pi/Lx));
u=sin(m*X);
v=cos(m*X);

end

% boxes
if 0

m=2; % number of boxes... even number for periodic BC
[X,Y]=meshgrid(x*(m*pi/Lx),y*(m*pi/Lx));
m=1; % number of rows
% try 6 secs for m=1
u=sin(m*X).*sin(m*Y);
v=cos(m*X).*cos(m*Y);

end

z_range = scale_multiply*[min(min(u)) max(max(u))];
figure(’doublebuffer’,’on’,’backingstore’,’on’);

h=figure(1);
%get(h,’Position’)
% bottom of screen is zero [left,bottom, width, height]
set(h,’Position’,[5 40 560 420]);

% form u & v into vector to pass to ode23
ut=reshape(fft2(u)/N,N,1); %/N ?
vt=reshape(fft2(v)/N,N,1);
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zt=[ut;vt];
global kg
[Kx,Ky]=meshgrid(kx,ky);
kg=d1*(Kx.^2+Ky.^2)-e;
while 1

fprintf(’%4.1f ’,time);
if (mod(floor(time/delta_t),12)==0) & (time>0)

fprintf(’\n’);
end
% plot new solution
gt=reshape(zt(1:N),nx,ny);
% calc linear (exponential) terms
ud=exp(time*kg);
ut=gt./ud;
u=real(ifft2(ut*N)); %ut*N?
% pcolor doesn’t show last row or column, so add dummies.
u2 = [real(u); zeros(1,nx)];
u2 = [u2, zeros(ny+1,1)];
pcolor(u2);
if fixed_scale

caxis(z_range)
end
colorbar;shading flat;
drawnow;
if movey

F(frame) = getframe;
end
frame=frame+1;
last_frame_time = time;
if time>=end_time

fprintf(’\nend time reached\n’);
break

end

options=odeset(’abstol’,inf); %otherwise very slow!
[t,zsol]=ode23(’rd3_rhs’,[time,time+delta_t],zt,...

options,d1,nx,ny,e,c,a,beta);
time=t(end);
% note: ’ gives complex conjugate, so use .’ instead
zt=zsol(end,:).’; %last row corresponds to current time

end
fprintf(’cputime = %f\n’,cputime - start_time);
if movey & frame>2

fnam=[’f’ int2str(num) ’.avi’];
fprintf(’movie file %s\n’,fnam);
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movie2avi(F,fnam)
num=num+1;
close all

end
end

B.5 rd3rhs.m

function rhs=rd3_rhs(t,zt,dummy,d1,nx,ny,e,c,a,beta)
global stp kg
N=nx*ny;

% calc linear (exponential) terms
ud=exp(t*kg);
rhs=[reshape(ud,N,1); reshape(ud,N,1)];

% convert gt,ht to ut,vt
ut=reshape(zt(1:N),nx,ny)./ud;
vt=reshape(zt(N+1:2*N),nx,ny)./ud;

% non-linear terms
u=reshape(real(ifft2(ut*N)),nx,ny); %ut*N?
v=reshape(real(ifft2(vt*N)),nx,ny); %vt*N?
A2=u.*u +v.*v;
up=-a*A2.*u + beta*A2.*v - c*v;
dn=c*u - beta*A2.*u - a*A2.*v;
up=reshape(fft2(up)/N,N,1); %fft(up)/N ?
dn=reshape(fft2(dn)/N,N,1);
rhs=rhs.*[up;dn];
%fprintf(’max(rhs)=%f\n’,max(abs(rhs)));
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