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Abstract
A new algorithm for computing contact forces between solid

objects with friction is presented. The algorithm allows a mix
of contact points with static and dynamic friction. In contrast to
previous approaches, the problem of computing contact forces is not
transformed into an optimization problem. Because of this, the need
for sophisticated optimization software packages is eliminated. For
both systems with and without friction, the algorithm has proven
to be considerably faster, simpler, and more reliable than previous
approaches to the problem. In particular, implementation of the
algorithm by nonspecialists in numerical programming is quite fea-
sible.

1. Introduction
In recent work, we have established the viability of using analyt-

ical methods to simulate rigid body motion with contact[1,2,3]. In
situations involving only bilateral constraints (commonly referred
to as “equality constraints”), analytical methods require solving
systems of simultaneous linear equations. Bilateral constraints typ-
ically arise in representing idealized geometric connections such
as universal joints, point-to-surface constraints etc. For systems
with contact, unilateral (or “inequality”) constraints are required
to prevent adjoining bodies from interpenetrating. In turn, the
simultaenous linear equations arising from a system of only bilateral
constraints must be augmented to reflect the unilateral constraints;
the result is in general an inequality-constrained nonlinear mini-
mization problem.

However, analytical techniques for systems with contact have
yet to really catch on in the graphics/simulation community. We
believe that this is because of the perceived practical and theoretical
complexities of using analytical techniques in systems with contact.
This paper has two goals, one of which is to address these concerns:
in particular, we present analytical methods for systems with contact
that can be practically implemented by those of us (such as the
author) whoare not specialists in numerical analysis or optimiza-
tion. These methods are simpler, reliable, and faster than previous
methods used for either systems with friction, or systems without
friction.

Our other goal is to extend and improve previous algorithms for
computing contact forces with friction[3]. We present a simple, fast
algorithm for computing contact forces with friction. The restriction
of our algorithm to the frictionless case is equivalent to an algorithm
described in Cottle and Dantzig[4] (but attributed to Dantzig) for
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solving linear complementarity problems. It is not our intention
to reinvent the wheel; however, it is necessary to first understand
Dantzig’s algorithm and why it works for our frictionless sytems
before going on to consider the more general solution algorithm
we propose to deal with friction. We give a physical motivation
for Dantzig’s algorithm and discuss its properties and implemen-
tation in section 4. For frictionless systems, our implementation
of Dantzig’s algorithm compares very favorably with the use of
large-scale, sophisticated numerical optimization packages cited by
previous systems[11,7,8,6]. In particular, for a system withn unilat-
eral constraints, our implementation tends to require approximately
three times the work required to solve a square linear system of
size n using Gaussian elimination. Most importantly, Dantzig’s
algorithm, and our extensions to it for systems with friction, are
sufficiently simple that nonspecialists in numerical programming
can implement them on their own; this is most assuredlynot true
of the previously cited large-scale optimization packages.

Interactive systems with bilateral constraints are common, and
there is no reason that moderately complicated interactive simu-
lation with collision and contact cannot be achieved as well. We
strongly believe that using our algorithms, interactive simulations
with contact and friction are practical. We support this claim by
demonstrating the first known system for interactive simulations
involving contact and a correct model of Coulomb friction.

2. Background and Motivation
Lötstedt[10] represents the first attempt to compute friction forces

in an analytical setting, by using quadratic programming to compute
friction forces based on a simplification of the Coulomb friction
model. Baraff[3] also proposed analytical methods for dealing with
friction forces and presents algorithms that deal with dynamic fric-
tion (also known as sliding friction) and static friction (also known
as dry friction). The results for dynamic friction were the more
comprehensive of the two, and the paper readily acknowledges that
the method presented for computing contact forces with static fric-
tion (a Gauss-Seidel-like iterative procedure) was not very reliable.
The method also required an approximation for three-dimensional
systems (but not for planar systems) that resulted in anisotropic
friction. Finally, the results presented did not fully exploit earlier
discoveries concerning systems with only dynamic friction, and no
static friction.

In this paper, we present a method for computing contact forces
with both dynamic and static friction that is considerably more
robust than previous methods. Our method requires no approxima-
tions for three-dimensional systems, and is much simpler and faster
than previous methods. We were extremely surprised to find that
our implementation of the method, applied to frictionless systems,
was a large improvement compared with the use of large-scale opti-
mization software packages, both in terms of speed and, especially,
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simplicity.1 Previous simulation systems for frictionless contact
that we know of have used either heuristic solution methods based
on linear programming[11], quadratic programming algorithms[7],
or constrained linear least-squares algorithms[6]. In all cases the
numerical software required is sufficiently complicated that either
public-domain or commercially available software packages are
required. The problems with this are:

� Serious implementations of linear programming codes are
much less common than serious implementations for solving
linear systems. Serious implementations for quadratic pro-
gramming are even rarer.

� A fair amount of mathematical and coding sophistication is
required to interface the numerical software package with the
simulation software. In some cases, the effort required for an
efficient interface was prohibitively high[12].

� The packages obtained contained a large number of adjustable
parameters such as numerical tolerances, iteration limits, etc.
It is not uncommon for certain contact-force computations to
fail with one set of parameters, while succeeding with another,
or for a problem to be solvable using one software package,
but unsolvable using a different package. In our past work in
offline motion simulation, reliability has been a vexing, but
tolerable issue: if a given simulation fails to run, one can
either alter the initial conditions slightly, hoping to avoid the
specific configuration which caused the difficulty, or modify
the software itself prior to rerunning the simulation. This
approach is clearly not practical in an interactive setting.

� Along the same lines, it is difficult to isolate numerical prob-
lems during simulation, because of the complexity of the soft-
ware packages. Unless great effort is put into understanding
the internals of the code, the user is faced with a “black box.”
This is desirable for black-box code that is bullet-proof, but a
serious impediment when the code is not.

Given these hurdles, it is not surprising that analytical methods
for systems with contact have not caught on yet. Our recent work
has taught us that the difficulties encountered are, in a sense, self-
created. In computing contact forces via numerical optimization, we
translate a very specific problem (contact-force computation) into a
much more general problem (numerical optimization). The trans-
lation loses some of the specific structure of the original problem,
making the solution task more difficult. The approach we take in
this paper is to avoid (as much as possible) abstracting our specific
problem into a more general problem. The result is an algorithm
that solves a narrower range of problems than general purpose
optimization software, but is faster, more reliable, and considerably
easier to implement.

3. Contact Model
In this section we will define the structure of the simplest problem

we deal with: a system of frictionless bodies contacting atn distinct
points. For each contact pointpi between two bodies, let the scalar
ai denote the relative acceleration between the bodies normal to the
contact surface atpi. (We will not consider the question of impact
in this paper; thus, we assume that the relative normalvelocityof
bodies at each contact is zero.) We adopt the convention that a
positive accelerationai indicates that the two bodies are breaking
contact atpi . Correspondingly,ai < 0 indicates that the bodies
are accelerating so as to interpenetrate. An acceleration ofai = 0
indicates that the bodies have zero normal acceleration atpi and

1Actually, not being numerical specialists, any working numerical software
we were capable of creating would have to be simpler. We automatically
assumed however that such software would be slower than the more com-
prehensive packages written by experts in the field.

remain in contact (although the relative tangential acceleration may
be nonzero). To prevent interpenetration we requireai � 0 for each
contact point.

For frictionless systems, the force acting between two bodies at
a contact point is normal to the contact surface. We denote the
magnitude of the normal force between the bodies atpi by the scalar
ƒi . A positiveƒi indicates a repulsive force between the bodies at
pi, while a negativeƒi indicates an attractive force. Since contact
forces must be repulsive, a necessary condition onƒi isƒi � 0. Also,
since frictionless contact forces are conservative, we must add the
conditionƒiai = 0 for each contact point. This condition requires
that at least one ofƒi andai be zero for each contact: eitherai = 0
and contact remains, orai > 0, contact is broken, andƒi is zero.

We will denote then-vector collection ofai ’s asa; theith element
of a is ai . The vectorƒ is the collection of theƒi ’s. (In general,
boldface type denotes matrices and vectors; theith element of a
vector b is the scalarbi , written in regular type. The symbol0
denotes on appropriately sized vector or matrix of zeros.) The
vectorsa andƒ are linearly related; we can write

a= Aƒ + b (1)

whereA 2 Rn�n is symmetric and positive semidefinite (PSD),
andb 2 Rn is a vector in the column space ofA (that is,b = Ax
for some vectorx). The matrixA reflects the masses and contact
geometries of the bodies, whileb reflects the external and inertial
forces in the system. At any instant of time,A andb are known
quantities whileƒ is the unknown we are interested in solving for.

The problem of determining contact forces is therefore the prob-
lem of computing a vectorƒ satisfying the conditions

ai � 0; ƒi � 0 and ƒiai = 0 (2)

for each contact point. We will call equation (2) thenormal force
conditions. Using equation (1), we can phrase the problem of
determining a suitableƒ in several forms. First, sinceƒi andai are
constrained to be nonnegative, the requirement thatƒiai = 0 for
eachi is equivalent to requiring that

nX
i=1

ƒiai = ƒTa = 0 (3)

since no cancellation can occur. Using equation (1), we can say that
ƒ must satisfy the conditions

Aƒ + b � 0; ƒ � 0 and ƒT(Aƒ + b) = 0: (4)

Equation (4) defines what is known as a linear complementarity
problem (LCP). Thus one solution method for computing contact
forces is to formulate and solve the LCP of equation (4). We
can also compute contact forces by considering the conditions of
equation (2) as a quadratic program (QP): we can equivalently say
that a vectorƒ satisfying equation (4) is a solution to the quadratic
program

min
ƒ

ƒT(Aƒ+ b) subject to

�
Aƒ+ b � 0

ƒ � 0

�
: (5)

Phrasing the computation ofƒ as a QP is a natural choice. (The
problem of solving QP’s has received more attention than the prob-
lem of solving LCP’s. Both problems areNP-hard in general but
can be practically solved whenA is PSD.) Having transformed the
problem of computing contact forces into a QP, we have a variety of
techniques available for solving the QP. Unfortunately, by moving
to an optimization problem—minimizeƒT(Aƒ+b)—we necessarily
lose sight of the original conditionƒiai = 0 for each contact point.
Because of this, we are solving a more general, and thus harder,
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problem than we really need to. In developing an algorithm, we
prefer to regard the relationship betweenƒ anda in terms of the
n separate conditionsƒiai = 0 in equation (2) rather than the
single constraintƒTa = 0 in equation (4) or the minimization of
ƒTa in equation (5). In the next section, we describe a physically-
motivated method for solving equation (2), along with a practical
implementation. Following this, we consider friction in section 5.

4. Frictionless Systems
In this section we present a restriction of our algorithm for com-

puting contact forces with friction to the frictionless case. We also
sketch a proof of correctness. We extend the algorithm in section 5
to handle static friction, and dynamic friction in section 6. A de-
scription of Dantzig’s algorithm for solving LCP’s, and an excellent
treatment of LCP’s in general can be found in Cottleet al.[5].

4.1 Algorithm Outline
Dantzig’s algorithm for solving LCP’s is related to pivoting

methods used to solve linear and quadratic programs. The major
difference is that all linear and most quadratic programming algo-
rithms begin by first finding a solution that satisfies the constraints
of the problem (for us,Aƒ + b � 0 andƒ � 0) and then trying to
minimize the objective function (for us,ƒTAƒ+ ƒTb).

In contrast, Dantzig’s algorithm, as applied to the problem of
computing contact forces, works as follows. Initially, all contact
points but the first are ignored, andƒi is set to zero for alli. The
algorithm begins by computing a value forƒ1 that satisfies the nor-
mal force conditions—equation (2)—fori = 1, without worrying
about those conditions holding for any otheri. Next, the algorithm
computes a value forƒ2 that satisfies the normal force conditions for
i = 2 while maintaining the conditions fori = 1. This may require
modification ofƒ1. The algorithm continues in this fashion: at any
point, the conditions at contact points 1� i � k� 1 are satisfied
for somek andƒi = 0 for i > k, and the algorithm determinesƒk,
possibly altering some of theƒi ’s for i < k, so that the conditions
now hold for alli � k. When the conditions hold for alln contact
points, the algorithm terminates.

To make this concrete, imagine that we have so far computed
valuesƒ1 throughƒn�1 so that the normal force conditions hold
everywhere except possibly at thenth contact point. Suppose that
with ƒn still set to zero we havean � 0. If so, we immediately
have a solutionƒ that satisfies the normal conditions at alln contact
points.

Suppose however that forƒn = 0 we havean < 0. Our physical
intuition tells us that since we currently haveƒn = 0, the problem
is that thenth contact force is not doing its fair share. We must
increaseƒn until we reach the point thatan is zero, and we must
do so without violating the normal force conditions at any of the
first n � 1 contact points. Since increasingƒn may change some
of theai ’s, we will generally need to modify the otherƒi variables
as we increaseƒn. Our goal is to seek a strength forƒn that is just
sufficient to causean to be zero. (We emphasize that this is not a
process which takes place over some time intervalt0 to t1 during a
simulation; rather, we are considering the proper value thatƒ should
assume at a specific instant in time.)

The adjustments we need to make toƒ1 through ƒn�1 as we
increaseƒn are simple to calculate. Since the order in which contacts
are numbered is arbitrary, let us imagine that for the current values
of the ƒi ’s we havea1 = a2 = ::: = ak = 0 for some value
0 � k � n� 1, and for allk+ 1 � i � n� 1, we haveai > 0.
Remember thatan < 0. To simplify bookkeeping, we will employ
two disjoint index setsC andNC. At this point in the algorithm,
let C = f1; 2; :::; kg; thus,ai = 0 for all i 2 C. Similarly, let
NC = fk + 1; k + 2; :::; n � 1g; sinceai > 0 for all i 2 NC,
and we have assumed thatƒiai = 0 for i � n� 1, it must be that

ƒi = 0 for all i 2 NC. Throughout the algorithm, we will attempt to
maintainai = 0 wheneveri 2 C. Similarly, we will try to maintain
ƒi = 0 wheneveri 2 NC. Wheni 2 C, we say that theith contact
point is “clamped,” and wheni 2 NC we say theith contact point
is “unclamped.” (Ifi is in neither, theith contact point is currently
being ignored.)

For a unit increase ofƒn (that is, if we increaseƒn to ƒn + 1) we
must adjust eachƒi by some amount�ƒi . Let�ƒn = 1, and let us
set�ƒi = 0 for all i 2 NC, since we wish to maintainƒi = 0 for
i 2 NC. We wish to choose the remaining�ƒi ’s for i 2 C such that
�ai = 0 for i 2 C. The collection�a of the�ai ’s is defined by

�a = A(ƒ+�ƒ) + b � (Aƒ + b) = A�ƒ (6)

where�ƒ denotes the collection of the�ƒi ’s.
Intuitively, we picture the forceƒi at a clamped contact point

undergoing some variation in order to maintainai = 0, while the
force at an unclamped contact remains zero. Modifications of this
sort will maintain the invariant thatƒiai = 0 for all 1� i � n� 1.
SinceC currently hask elements, computing the unspecified�ƒi ’s
requires solvingk linear equations ink unknowns. (In general,C
will vary in size during the course of the algorithm. At any point
in the algorithm when we are establishing the conditions at therth
contact,C will contain r � 1 or fewer elements.)

However, we also need to maintain the conditionsƒi � 0 and
ai � 0. Thus, as we increaseƒn, we may find that for somei 2 C,
ƒi has decreased to zero. At this point, it may be necessary to
unclamp this contact by removingi from C and adding it toNC,
so that we do not causeƒi to decrease any further. Conversely, we
may find that for somei 2 NC, ai has decreased to a value of zero.
In this case, we will wish to clamp the contact by movingi from
NC into C, preventingai from decreasing any further and becoming
negative. The process of moving the various indices betweenC and
NC is exactly the numerical process known as pivoting. Given that
we start with suitable values forƒ1 throughƒn�1, computingƒn is
straightforward. We set�ƒn = 1 and�ƒi = 0 for i 2 NC, and
solve for the�ƒi ’s for i 2 C so that�ai = 0 for all i 2 C. Next,
we choose the smallest scalars > 0 such that increasingƒ by s�ƒ
causes eitheran to reach zero, or some indexi to move betweenC
andNC. If an has reached zero, we are done; otherwise, we change
the index setsC andNC, and loop back to continue increasingƒn.

We now describe the process of computing�ƒ along with the
step sizes. After this, we present the complete algorithm and discuss
its properties.

4.2 The Pivot Step
The relation between the vectorsa andƒ is given bya = Aƒ+b.

Let us continue with our example in whichC = f1; 2; :::; kg and
NC= fk+ 1; k+ 2; :::; n� 1g. We need to compute�ƒ and then
determine how large a multiple of�ƒ we can add toƒ. Currently,
we havean < 0. Let us partitionA and�ƒ by writing

A =

 
A11 A12 v1

AT
12 A22 v2

vT
1 vT

2 �

!
and �ƒ=

 
x
0
1

!
(7)

where A11 and A22 are square symmetric matrices,v1 2 Rk,
v2 2 R(n�1)�k, � is a scalar, andx 2 Rk is what we will need
to compute. The linear system�a = A�ƒ has the form

�a = A�ƒ = A

 
x
0
1

!
=

 
A11x + v1

AT
12x+ v2

vT
1x + �

!
: (8)

Since the firstk components of�a need to be zero, we require
A11x+ v1 = 0; equivalently, we must solve

A11x = �v1: (9)
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After solving equation (9), we compute�a = A�ƒ, and are
ready to find the maximum step size parameters we can scale�ƒ
by. For eachi 2 C, if �ƒi < 0, then the force at theith contact point
is decreasing. The maximum steps we can take without forcingƒi

negative is

s�
ƒi

��ƒi
: (10)

Similarly, for eachi 2 NC, if �ai < 0 then the accelerationai is
decreasing; the maximum step is limited by

s�
ai

��ai
: (11)

Since we do not wishan to exceed zero, if�an > 0, the maximum
step is limited by

s�
�an

�an
: (12)

Once we determines, we increaseƒ by s�ƒ, which causesa to
increase byA(s�ƒ) = s�a. If this causes a change in the index sets
C andNC, we make the required change and continue to increase
ƒn. Otherwise,an has achieved zero.

4.3 A Pseudo-code Implementation
The entire algorithm is described below in pseudo-code. The

main loop of the algorithm is simply:

function compute-forces
ƒ = 0
a = b
C = NC= ;
while 9d such that ad < 0

drive-to-zero(d)

The functiondrive-to-zeroincreasesƒd until ad is zero. The
direction of change for the force,�ƒ, is computed byfdirection.
The functionmaxstepdetermines the maximum step sizes, and the
constraintj responsible for limitings. If j is in C or NC, j is moved
from one to the other; otherwise,j = d, meaningad has been driven
to zero, anddrive-to-zeroreturns:

function drive-to-zero(d)
L1:
�ƒ = fdirection(d)
�a = A�ƒ
(s; j) = maxstep(ƒ; a;�ƒ;�a; d)
ƒ = ƒ+ s�ƒ
a = a+ s�a
if j 2 C

C = C� f j g
NC= NC[ f j g
goto L1

else if j 2 NC
NC= NC� f j g
C = C[ f j g
goto L1

else j must be d, implying ad = 0
C = C[ f j g
return

The functionfdirection computes�ƒ. We writeACC to denote
the submatrix ofA obtained by deleting thejth row and column of
A for all j 62 C. Similarly, ACd denotes thedth column ofA with
elementj deleted for allj 62 C. The vectorx represents the change
in contact force magnitudes at the clamped contacts. The transfer
of x into �ƒ is the reverse of the process by which elements are
removed from thedth column ofA to form ACd. (That is, for all

i 2 C, we assign to�ƒi the element ofx corresponding to theith
contact.)

function fdirection(d)
�ƒ = 0 set all�ƒi to zero
�ƒd = 1
let A11 = ACC

let v1 = ACd

solve A11x = �v1

transfer x into �ƒ
return �ƒ

Last, the functionmaxstepreturns a pair(s; j) with s the maxi-
mum step size that can be taken in the direction�ƒ andj the index
of the contact point limiting the step sizes:

function maxstep(ƒ; a;�ƒ;�a; d)
s=1
j = �1
if �ad > 0

j = d
s= �ad=�ad

for i 2 C
if �ƒi < 0

s0 = �ƒi=�ƒi

if s0 < s
s= s0

j = i
for i 2 NC

if �ai < 0
s0 = �ai=�ai

if s0 < s
s= s0

j = i
return (s; j)

It is clear that if the algorithm terminates, the solutionƒ will yield
ai � 0 for all i. Since eachƒi is initially zero and is prevented from
decreasing below zero bymaxstep, at terminationƒi � 0 for all i.
Last, at termination,ƒiai = 0 for all i since eitheri 2 C andai = 0,
or i 62 C andƒi = 0.

The only step of the algorithm requiring substantial coding is
fdirection, which requires forming and solving a square linear sys-
tem. Remarkably, even ifA is singular (andA is often extremely
rank-deficient in our simulations), the submatricesA11 encountered
in the frictionless case are never singular. This is a consequence of
b being in the column space ofA.

4.4 Termination of the Algorithm
We will quickly sketch why the algorithm we have described

must always terminate, with details supplied in appendix A. Exam-
ining the algorithm, the two critical steps are solvingA11x = �v1

and computing the step sizes. First off, could the algorithm fail
because it could not computex? SinceA is symmetric PSD, ifA
is nonsingular thenA11 is nonsingular andx exists. Even ifA is
singular, the submatricesA11 considered by the algorithm are never
singular, as long asb lies in the column space ofA.2 As a result,
the systemA11x = �v1 can always be solved. This is however a
theoretical result. In actual practice, whenA is singular it is possible

2A complete proof of this is somewhat involved. The central idea is that if
thejth contact point has not yet been considered and represents a “redundant
constraint” (that is, addingj into C makesA11 singular) thenaj will not be
negative, so there will be no need to calldrive-to-zeroon j. Similarly, if
j 2 NC and movingj to C would makeA11 singular, it will not be the case
thataj tries to decrease below zero, requiringj to be placed inC. Essentially,
the nonzeroƒi ’s will do the work of keepingaj from becoming negative,
withoutƒj having to become positive, allowingj to remain outside ofC.
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that roundoff errors in the algorithm may cause an indexj to enter
C so that the resulting matrixA11 is singular. This is a very rare
occurrence, but even so, it does not present a practical problem.
Appendix A establishes that the vectorv1 is always in the column
space of the submatrixA11 arising fromanyindex setC. Thus, even
if A11 is singular, the equationA11x = �v1 is well-conditioned, and
is easily solved by standard factorization methods.3 In essence, we
assert that “A11 is never singular, and even if it is,A11x = �v1 is
still easily solved.”

Since it is always possible to solveA11x = �v1 and obtain
�ƒ, the real question of termination must depend on each call to
drive-to-zerobeing able to forcead to zero. To avoid being bogged
down in details, let us assume thatA is nonsingular, with specific
proofs deferred to appendix A; additionally, appendix A discusses
the necessary extensions to cover the case whenA is singular.
Although the singular versus the nonsingular cases require slightly
different proofs, we emphasize thatthe algorithm itselfremains
unchanged; that is, the algorithm we have just described works for
both positive definite and positive semidefiniteA.

The most important question to consider is whether increasingƒ
by an amounts�ƒ actually increasesad. Given a changes�ƒ in ƒ,
from equation (8) the increase inad is

s(vT
1x + �) = s�ad: (13)

Theorem 2 shows that ifA is positive definite,vT
1x + � is always

positive. Thus,ad will increase as long ass is always positive. Since
vT

1 + � = �ad > 0, this shows thatmaxstepnever returns with
s=1 andj = �1.

Can the algorithm take steps of size zero? In order formaxstep
to returns = 0, it would have to the case that eitherƒi = 0 and
�ƒi < 0 for somei 2 C or ai = 0 and�ai < 0 for some
i 2 NC. Theorems 4 and 5 shows that this cannot happen. Thus,s
is always positive. Therefore, the only way forad to not reach zero
is if drive-to-zerotakes an infinite number of stepss�ƒ that result
in in ad converging to some limit less than or equal to zero. This
possibility is also ruled out, since theorem 3 in appendix A shows
that the setC of clamped contact points is never repeated during a
given call todrive-to-zero. Thus,drive-to-zerocan iterate only a
finite number of times beforead reaches zero.

4.5 Implementation Details
The algorithm just described is very simple to implement and

requires relatively little code. The most complicated part involves
forming and solving the linear systemA11x = �v1. This involves
some straightforward bookkeeping of the indices inC andNC to
correctly formA11 and then distribute the components ofx into�ƒ.
It is important to note that each call tofdirection will involve an
index setC that differs from the previous index setC by only a
single element. This means that each linear systemA11x = �v1

will differ from the previous system only by a single row and
column. Although each such system can be solved independently
(for example, using Cholesky decomposition), for large problems it
is more efficient to use an incremental approach.

In keeping with our assertion that nonspecialists can easily im-
plement the algorithm we describe, we note that our initial imple-
mentation simply used Gaussian elimination, which we found to
be completely satisfactory. (Anticipating the developments of the
next section whenA11 is nonsymmetrical, we did not bother to
use a Cholesky factorization, although this would have performed
significantly faster.)

Gill et al.[9] describe a package called LUSOLthat incrementally
factors a sparse matrixA into the formA = LU whereL is lower

3Since A11 is both symmetric and PSD,A11 will still have a Cholesky
factorizationA11 = LL T, althoughL is singular. SinceL can be simply
and reliably computed, this is one possible way of solving forx.

triangular andU is upper triangle. Given such a factorization, ifA
has dimensionn and a new row and column are added toA, or a row
and column are eliminated fromA, a factorization of the new matrix
can be recomputed quickly. Unfortunately, the coding effort for
LUSOLis large. One of the authors of the LUSOLpackage was kind
enough to provide us with a modified version of the software[13]
that treatsA as a dense matrix and computes a factorizationLA = U
(whereL is no longer triangular). In the dense case, an updated fac-
torization is obtained inO(n2) time whenA is altered. The modified
version contains a reasonably small amount of code. For a serious
implementation we highly recommend the use of an incremental
factorization routine.

In addition, it is trivial to make the algorithm handle standard
bilateral constraints. For a bilateral constraint, we introduce a pair
ƒi andai , and we constrainai to always be zero while lettingƒi be
either positive or negative. Givenk such constraints, we initially
solve a square linear system of sizek to compute compute initial
values for all the bilateralƒi ’s so that all the correspondingai ’s are
zero. Each suchi is placed intoC at the beginning of the algorithm.
In maxstep, we ignore each indexi that is a bilateral constraint, since
we do not care if thatƒi becomes negative. As a result, the bilateral
i’s always stay inC and the bilateralai ’s are always zero. Exactly
the same modification can be made in the algorithm presented in the
next section.

5. Static Friction
The algorithm of the previous section can be considered a con-

structive proof that there exists a solutionƒ satisfying the normal
force conditions for any frictionless system. The algorithm pre-
sented in this section grew out of an attempt to prove the conjecture
that all systems with static friction, but no dynamic friction, also
possess solutions. (The conjecture is false for systems with dynamic
friction.) The conjecture currently remains unproven. We cannot
prove that the algorithm we present for computing static friction
forces will always terminate; if we could, that in itself would con-
stitute a proof of the conjecture. On the other hand, we have not yet
seen the algorithm fail, so that the algorithm is at least practical (for
the range of simulations we have attempted so far).

Let us consider the situation when there is friction at a contact
point. The friction force at a point acts tangential to the contact
surface. We will denote the magnitude of the friction force at the
ith contact byƒFi , and the magnitude of the relative acceleration in
the tangent plane asaFi . We will also denote the magnitude of the
normal force asƒNi , rather thanƒi , and the magnitude of the normal
acceleration asaNi rather thanai . To specify the tangential acceler-
ation and friction force completely in a three-dimensional system,
we would also need to specify thedirectionof the acceleration and
friction force in the tangent plane. For simplicity, we will begin by
dealing with two-dimensional systems. At each contact point, lett i

be a unit vector tangent to the contact surface;t i is unique except for
a choice of sign. In a two dimensional system, we will treatƒFi and
aFi as signed quantities. A friction force magnitude ofƒFi denotes
a friction force ofƒFi t i , and an acceleration magnitudeaFi denotes
an acceleration ofaFi t i . Thus, if aFi andƒFi have the same sign,
then the friction force and tangential acceleration point in the same
direction.

Static friction occurs when the relative tangential velocity at a
contact point is zero; otherwise, the friction is called dynamic fric-
tion. In this section, we will consider only static friction. Any con-
figuration of objects that is initially at rest will have static friction,
but no dynamic friction. Additionally, a “first-order” (or quasistatic)
simulation world where force andvelocityare related byƒ = mv
also has static friction but never any dynamic friction
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5.1 Static Friction Conditions
At a contact point with static friction, the magnitudevFi of the

relative tangential velocity is zero. If the effect of all the forces in
the system producesaFi = 0, meaning that the conditionvFi = 0 is
being maintained, thenƒFi need satisfy only

� �ƒNi � ƒFi � �ƒNi (14)

where the scalar� denotes the coefficient of friction at the contact
point. (We will not bother to index� over the contact points,
although this is easily done.) If the tangential acceleration is not
zero, then the conditions onƒFi are more demanding:jƒFi j must be
equal to�ƒNi andƒFi must have sign opposite that ofaFi .

Following the pattern of section 4, we write thatƒNi , aNi , ƒFi and
aFi must satisfy the normal force conditions

ƒNi � 0; aNi � 0 and ƒNiaNi = 0; (15)

as well as

jƒFi j � �ƒNi ; aFiƒFi � 0 and aFi(�ƒNi � jƒFi j) = 0: (16)

The conditionaFi(�ƒNi � jƒFi j) = 0 forcesƒFi to have magnitude
�ƒNi if aFi is nonzero. The conditionaFiƒFi � 0 forcesaFi andƒFi to
have opposite sign, which means that the friction force opposes the
tangential acceleration. We will call the conditions of equation (16)
the static friction conditions; unless specifically noted, a contact
point said to satisfy the static friction conditions implies satisfaction
of the normal force conditions as well.

The approach taken by previous attempts[10,3] at modeling static
friction has been to form an optimization problem. If we define the
quantity scalarzby

z=
X

i

�
jaFi j(�ƒNi � jƒFi j) + ƒNiaNi

�
(17)

then the problem becomes

min
ƒNi ;ƒFi

z subject to

�
ƒNi � 0
aNi � 0

�
and

�
aFiƒFi � 0
jƒFi j � �ƒNi

�
:

Computing contact forces in this manner does not appear to be
practical.

5.2 Algorithm Outline
We believe it is better to deal with the problem as we did in

the frictionless case: as a number of separate conditions. Let us
consider the static friction condition with that perspective. We can
state the conditions onaFi andƒFi by considering that the “goal” of
the friction force is to keep the tangential acceleration as small as
possible, under the restrictionjƒFi j � �ƒNi . Accordingly, whenever
aFi is nonzero we insist that the friction force do its utmost to
“make” aFi be zero by requiring that the friction force push as hard
as possible opposite the tangential acceleration. The reason that
we find this a useful characterization is that it isessentially the
same characterizationwe employed in section 4 to motivate the
development of Dantzig’s algorithm.

In section 4.1, we assumed that the normal force conditions were
initially met for contacts 1 throughn� 1 and began withƒNn = 0.
If this resulted inaNn being nonnegative, then we immediately had
a solution. Otherwise, it was in a senseƒNn’s “fault” that aNn was
negative, and we increasedƒNn to remedy the situation. We can do
exactlythe same thing to compute static friction forces! Suppose
that the firstn�1 contacts of our system satisfy all the conditions for
static friction and that the normal force condition holds for thenth
contact point. We setƒFn = 0 and consideraNn. If n 2 NC, orn 2 C
but ƒNn = 0, then the static force condition is trivially met since

jƒFnj = 0 = �ƒNn. If not, but it happens thataFn = 0, again, we
have satisfied the static friction conditions, sincejƒFnj = 0 < �ƒNn.
Otherwise,aFn is nonzero and following our characterization of
static friction we must increase the magnitude of the friction force
to oppose the tangential acceleration as much as possible.

The procedure to do this is essentially the same as in the friction-
less case. Without loss of generality, assume that at thenth contact
pointaFn < 0. We will gradually increaseƒFn while maintaining the
static friction and normal conditions at all the othern� 1 contact
points and the normal condition at thenth contact point. As we
increaseƒFn, at some point, one of two things must happen: either
we will reach a point whereƒFn = �ƒNn, or we will reach a point
whereaFn = 0. In either case, the static friction conditions will then
be met.

5.3 Maintaining the Static Friction Conditions
Once we have established the static friction conditions at a con-

tact point, we need to maintain them. As before, we maintain the
conditionsƒNi � 0, aNi � 0 andƒNiaNi = 0 using the index sets
C andNC. To maintain the conditions on theƒFi andaFi variables,
we introduce the setsCF, NC� andNC+. The setCF is analogous
to C; wheneveri 2 CF, we manipulateƒFi to maintainaFi = 0.
(We can havei 2 CF and i 2 C. The fact thati 2 CF means we
are maintainingaFi = 0, while the fact thati 2 C means we are
maintainingaNi = 0.) In contrast toCF, if i 2 NC+, then we have
aFi < 0 andƒFi = �ƒNi . As long asi 2 NC+, we varyƒFi so that it
is always equal to�ƒNi . If aFi becomes zero, we movei from NC+

intoCF. Thus,NC+ denotes the set of contacts that haveƒFi positive
and at the upper bound of�ƒNi . Conversely, ifi 2 NC�, then we
haveaFi > 0 andƒFi = ��ƒNi . Again, as long asi 2 NC� we
will maintain the conditionƒFi = ��ƒNi , and movei into CF if aNi

becomes zero. Whenever we are increasing someƒNd or increasing
or decreasing someƒFd, computing the corresponding changes in
the otherƒFi andƒNi variables, along with the maximum possible
step size, is exactly the same as in the previous section.

In the frictionless case, when we managed to driveaNd to zero,
we addedd into C. For static friction, if the driving process stops
becauseaFd has reached zero, we insertd into CF. Otherwise,
the process stopped becausejƒFdj = �ƒNd and we addd into
NC� or NC+ as appropriate. Before we present our algorithm for
computing static friction forces in two dimensions, we discuss why
the algorithm we present is not guaranteed to terminate.

5.4 Algorithm Correctness
In section 4, we showed that as we increasedƒd, the acceleration

ad always increased in response, guaranteeing that a sufficiently
large increase ofƒd would achievead = 0. We also showed
that the index setC would never repeat while forcing a particular
ad to zero, guaranteeing we would not converge to some negative
value. Finally, we showed that steps of size zero would not occur,
guaranteeing that we would always make progress towardsad = 0.
For static friction, we can show all these properties except for the
last.

First, let us show that if we start withaFd < 0, as we increase
ƒFd, either we will reach a point whereƒFd = �ƒNd, or we will reach
a point whereaFd = 0. This is not obvious. SinceƒNd is nonzero
(otherwiseƒFd = 0 would satisfy the static friction conditions), we
must haved 2 C. This means that as we increaseƒFd, we may also
be requiring thatƒNd change as well. If�ƒNd increases faster than
ƒFd does, thenƒFd will never reach a value of�ƒNd.

Similarly, it is not necessarily the case that increasingƒFd will
causeaFd to increase. The reason for this is the following: the
relation between the acceleration variables and force variables is
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still linear, and we can write

a =

0
BBB@

aN1

aF1

...
aNn

aFn

1
CCCA = A

0
BBB@

ƒN1
ƒF1
...

ƒNn
ƒFn

1
CCCA+ b = Aƒ + b (18)

whereA 2 R2n�2n andb 2 R2n andƒ anda are the collection of the
ƒ anda variables. As long as we have no dynamic friction, it is still
the case thatA is symmetric and PSD. For a unit increase inƒFd, we
solve for�ƒNi and�ƒFi exactly as we did in section 4. That is, for
i 2 C, we require�aNi = 0, and for all otheri, we have�ƒNi = 0.
For the friction forces, almost the same holds: fori 2 CF we require
�aFi = 0. However, fori 2 NC�, instead of setting�ƒFi = 0,
we require�ƒFi = ���ƒNi , to maintainƒFi = ��ƒNi . Similarly,
for i 2 NC+ we require�ƒFi = ��ƒNi to maintainƒFi = �ƒNi .
The side conditions�ƒFi = ���ƒNi prevent us from applying
theorem 2 as we did in section 4 and claiming thataFd increases as
ƒFd increases. In fact, in some situations, increasingƒFd will cause
aFd to decrease. The same holds forƒNd as well; prior to working
onƒFd we may find that increasingƒNd to establish the normal force
conditions may cause causesaNd to decrease.

Is it possible then that we can drive someƒFd or ƒNd infinitely far
without reaching a stopping point? Fortunately, it is not. Theorem 3
of appendix A states that for frictionless systems, as we increase
ƒNi the index setC never repeats. Exactly the same theorem is
trivially extended to cover static friction. Thus, we will never
encounter exactly the same setsC, NC, CF, NC� andNC+ while
driving a givenƒNn or ƒFn variable. We can use this to show that
increasingƒNd will eventually causeaNd to increase. Exactly the
same argument shows that increasingƒFd eventually causesaFd to
increase.

THEOREM 1 In a problem with static friction only, if aNd < 0 and
ƒNd = 0hold initially, a large enough increase in ƒNd will eventually
force aNd to increase.

PROOF. Suppose that we could arbitrarily increaseƒNd without
causingaNd to increase. SinceA is positive definite, in light of
theorem 2 this can only happen if one or more of the side conditions
�ƒFi = ���ƒNi hold, implying thatNC� [ NC+ 6= ;. Since the
index setsC, NC, CF, NC� andNC+ never repeat, there are only
finitely many combinations of those sets that can be encountered
while increasingƒNd. That means that we can only undergo finitely
many changes of the sets while increasingƒNd. Eventually, we settle
into a state where we can increaseƒNd without aNd increasing and
without any change occurring in the index sets.

However, this cannot be, because of the definition of the index
sets. Fori 2 C, to avoid a change in index sets, we must have
�ƒNi � 0; otherwise, a sufficiently large step will movei into NC.
The same logic requires that fori 2 NC we must have�aNi � 0,
otherwiseaNi will fall to zero. This yields�ƒNi�aNi = 0 for all i.
For the friction forces, ifi 2 CF, then�aFi = 0 so�aFi�ƒFi = 0.
For i 2 NC+, we haveaFi < 0, requiring�aFi � 0 to avoid
having to movei from NC+ to CF. Since�ƒNi � 0 for all i and
�ƒFi = ��ƒNi , we have�ƒFi � 0. This yields�aFi�ƒFi � 0 for
all i 2 NC+. A symmetric argument holds, yielding�aFi�ƒFi � 0
for all i 2 NC�.

Additionally, for at least onei in NC� or NC+, both�aFi and
�ƒFi are nonzero; otherwise, we could remove each side condition
�ƒFi = ���ƒNi and add the conditions�ƒFi = 0 and�aFi = 0
without altering any other�ƒNi or �ƒFi . If we did so however,
we would then be entitled to apply theorem 2, contradicting our
assumption thataNd is nonincreasing. Thus, for at least onei we

have�aFi�ƒFi strictly less than zero. Combining that with the fact
that�aNi�ƒNi � 0 and�aFi�ƒFi � 0 for all i we obtain

nX
i

�aNi�ƒNi +

nX
i

�aFi�ƒFi = �aT
�ƒ < 0: (19)

Since�a = A�ƒ, this gives us

�aT�ƒ= �ƒTA�ƒ < 0: (20)

Since�ƒ is nonzero andA is PSD, this is a contradiction (even ifA
is singular). Thus,ƒNd cannot be increased without bound without
eventually causingaNd to increase.2

However, there is still the possibility of taking steps of size zero,
and this is something that can and does occur when running the
algorithm. Theorems 4 and 5 may fail to hold because of the side
conditions�ƒFi = ���ƒNi . The following scenario is possible:
for somei 2 C, ƒNi decreases to zero. Accordingly,i is moved from
C to NC. Upon computing�ƒ with the new index set, we may
find that�aNi < 0 (which is ruled out in the frictionless case by
theorem 4). As a result, a step of size zero is taken, andi is moved
back into C. Clearly, the algorithm settles into a loop, alternately
moving i betweenC and NC by taking a step of size zero each
time. We cannot rule this behavior out in our algorithm for static
friction. (This is also our current sticking point in trying to prove the
conjecture that all systems with only static friction have solutions.)
Fortunately, we have found a practical remedy for the problem.

While attempting to establish the normal force or static friction
conditions at some pointk, if we observe that a variablei is al-
ternating betweenC and NC (or betweenNC� and CF or NC+

andCF), we removei from both CandNC (or from CF andNC�

or NC+). Temporarily, we will “give up” trying to maintain the
normal or static friction conditions at theith contact point. We do
so at the expense of making “negative progress,” in the sense that
although we will have achieved our immediate goal (establishing
normal or friction conditions at a particular contact point), we will
have done so by sacrificing normal and/or static friction conditions
previously achieved at other contacts. The algorithm will be forced
to reestablish the conditions at the points we have given up on at
some later time. Since contact points no long necessarily keep
their static friction or normal force conditions once established, we
cannot prove (as yet) that this process will ever terminate.

We have however used this algorithm on a large variety of
problems, and we have never yet encountered any situation for
which our algorithm went into an infinite loop. We speculate that
either no such situation is possible, meaning that all systems with
static friction have solutions, or it requires an extremely carefully
constructed problem to cause our algorithm to loop (although the
latter possibility does not necessarily imply that there is in fact no
solutionƒ). A third possibility of course is that we simply have not
sufficiently exercised our simulation system.

5.5 Algorithm for Computing Static Friction Forces
We now describe the necessary modifications to Dantzig’s algo-

rithm to handle static friction forces. The modifications increase the
complexity of the “logical” portion of the algorithm, but the heart
of the numerical code, computing�ƒ, remains the same. We give a
description of the necessary modifications of each procedure of the
algorithm.

Modifications to compute-frictionless-forces

The setsC, NC, CF, NC+, andNC� are all initially empty. The
main loop continually scans for a contact point at which the normal
or static friction conditions are not met. If no such points exist, the
algorithm terminates, otherwise,drive-to-zerois called to establish
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the conditions. Note that one must first establish the normal force
conditions at a given point before establishing the static friction
conditions there. In the event that the algorithm gives up on a
contact pointi which has the normal conditions established, it will
do so becauseƒNi is oscillating betweenC andNC. At this point
ƒNi = 0, and the normal conditions can be reestablished later.

If however we give up on the static friction conditions at theith
contact point,ƒFi may be nonzero. (We cannot discontinuously
setƒFi to zero as this might break the conditions atall the other
contact points.) Later, when the algorithm attempts to reestablish
the static friction conditions ati, we first driveƒFi to zero (simply by
instructingdrive-to-zeroto increase or decreaseƒFi until ƒFi = 0).

Modifications to drive-to-zero

This function is the same, except that there are more ways for
the index sets to change. If the limiting constraintj returned by
maxstepis the index of the force being driven,j is moved intoC if
it represents a normal force, and otherwise intoCF, NC�, or NC+

as appropriate; the procedure then returns. Otherwise,j is moved
betweenC andNC if it represents a normal force, and otherwise
betweenCF andNC� or NC+ as appropriate. Ifj attempts to move
into a set it just came from, and the previous step size was zero,
j is removed from whatever index set it was in. This is the point
at which the algorithm temporarily gives up on maintaining the
conditions at thejth contact point.

Modifications to fdirection

The modifications are minor. First, if we are driving a normal force,
we set�ƒNd = 1, otherwise we set�ƒFd = �1, depending which
way we want to drive the force. The index sets establish the set
of equations to solve: fori 2 NC, we set�ƒNi = 0; for i 2 C
we require�aNi = 0; for i 2 CF we require�aFi = 0; and for
i 2 NC+ [ NC� we require�ƒFi = ��ƒNi .

Modifications to maxstep

The modifications here are obvious. For each memberj in an index
set, we compute the minimum step sizes that causesj to need to
change to another set. For the driving indexd, we compute the step
size that causes us to reachaNd = 0 for a normal force, andaFd = 0
or ƒFd = ��ƒNd for a friction force. The minimum steps that can
be taken, along with the constraintj responsible for that limit, is
returned.

5.6 Three-dimensional Systems
We have been assuming that our system is two-dimensional. The

extension to three dimensions is straightforward.At each contact
point, let us denote vectorsu 2 R3 tangent to the contact surface as
pairs(x; y) by choosing a local coordinate system such that(1; 0)
and (0; 1) denote an orthornormal pair of tangent vectors. Let
(axi ; ayi) and (ƒxi ; ƒyi) denote the relative tangential acceleration
and friction force, respectively, at theith contact point. In three
dimensions, the Coulomb friction law requires that the friction force
be at least partially opposed to the tangential acceleration; that
is,

(ƒxi ; ƒyi) � (axi ; ayi) = ƒxiaxi + ƒyiayi � 0: (21)

The optimization approach taken in previous work[10,3] makes
enforcingjƒFi j � �ƒNi difficult, because

jƒFi j = (ƒx
2
i + ƒy

2
i )

1
2 � �ƒNi (22)

is a nonlinear constraint. However, this constraint is easily dealt
with by our algorithm. In place of the two setsNC� andNC+,
for three-dimensional systems, we use a single setNCF. In two

dimensions, given�ƒNi and�ƒFi , determining the step sizes so
thatƒFi + s�ƒFi = �(ƒNi + s�ƒNi) is trivial. In three dimensions,
computings> 0 so that

(ƒxi + s�ƒxi)
2
+ (ƒyi + s�ƒyi)

2
= (�(ƒNi + s�ƒNi))

2
(23)

is also trivial. As a result, it is easy to augmentmaxstepto movei
into NCF whenƒx

2
i + ƒy

2
y = (�ƒNi)

2 and also easy to detect when
to movei back intoCF. When i moves intoNCF, we record the
direction that the friction force is pointing in. As long asi remains
in NCF, we require the friction force(ƒxi ; ƒyi) to maintain the same
direction it had wheni most recently enteredNCF. Oncei moves
back intoCF, the pair(ƒxi ; ƒyi) may point in any direction.

To initially establish the static friction conditions forƒxi andƒyi ,
we first increaseƒxi (assumingaxi < 0) until eitheri moves into
NCF, or axi reaches zero. Ifi is in NCF, we are done, otherwise, we
now adjustƒyi so that eitherayi reaches zero, ori moves intoNCF.
Reversing the order with which one considersx andy, or rotating
the local coordinate system in the tangent plane may give rise to
different solutions ofƒ with this method. This is a consequence of
the condition of equation (21), which does not completely specify
the direction of friction when the tangential acceleration is nonzero
at a contact point.

6. Dynamic Friction
If the relative tangential velocity at a contact point is nonzero,

then dynamic friction occurs, as opposed to static friction. Re-
gardless of the resulting tangential acceleration, the strength of the
friction force satisfies

jƒFi j = �ƒNi ; (24)

with the direction of the force exactly opposite the relative tan-
gential velocity. SinceƒFi is no longer an independent variable,
when we formulate equation (18), we can replace all occurences
of ƒFi with ��ƒNi . This replacement results in a matrixA which
is unsymmetric and possibly indefinite as well. Because of this,
systems with dynamic friction can fail to have solutions for the
contact force magnitudes, requiring the application of an impulsive
force. Another consequence ofA losing symmetry and definiteness
is that all the theorems in this paper which requireA to be symmetric
and PSD fail to hold. Remarkably, this turns out to be a fortunate
development.

Previously, Baraff[3] presented an algorithm for computing fric-
tion forces and impulses for systems with dynamic friction but no
static friction; the intent was to treat the problem of nonexistence
of a solutionƒ. Baraff’s method for computing either regular or
impulsive forces for systems with dynamic friction involved using
Lemke’s algorithm[5] for solving LCP’s. It is noted that Lemke’s
algorithm can terminate by encountering an “unbounded ray.” The
algorithm we have just presented for static friction requires abso-
lutely no modifications to handle dynamic friction in this manner.
An unbounded ray corresponds to finding a state in which one can
drive a variableƒNi or ƒFi to infinity without forcingaNi or aFi to
zero, or inducing a change in the index setsC, NC, CF, NC+ orNC�.
When this occurs, it is easily detected, in thatmaxstepreturns a step
size ofs = 1. Note that theorem 2 tells us that an infinite step
cannot occur ifA is symmetric and PSD. which means that infinite
steps are possible only if there is dynamic friction in the system.
Either our algorithm finds a solutionƒ, or at some points = 1,
and the current force direction�ƒ matches the definition proposed
by Baraff for suitably applying impulsive forces to systems with
dynamic friction. As a result, we can unify our treatment of both
dynamic and static friction in a single algorithm. We note in closing
that we feel that this is mostly a theoretical, and not a practical
concern, because we have encountered this infinite driving mostly
in situations where� has been made unrealistically large.
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7. Results
Our method for computing contact and friction forces is both

reliable and fast. Like most pivoting algorithms (for example, the
simplex algorithm for linear programming), worst-case problems
resulting in exponential running times can be constructed. Empiri-
cally however, the algorithm appears to require aboutO(n) calls to
drive-to-zerofor systems with and without friction. Our real interest
however is the performance of the algorithm in actual practice.

We have implemented the two-dimensional algorithm for static
friction in an interactive setting and the three-dimensional algorithm
in an offline simulation system. For frictionless systems, our so-
lution algorithm compares favorably to Gaussian elimination with
partial pivoting. Given a matrixA and vectorb, the algorithm of
section 4 takesonlytwo to three times longer to compute the contact
forces than it would take to solve the linear systemAx = b, using
Gaussian elimination. Compared with the best QP methods we
know of, our algorithm runs five to ten times faster, on problems up
to sizen = 150. For systems with friction, there is no comparable
solution algorithm we can compare our algorithm to.

Interactive simulations of 212D mechanisms are shown in fig-
ures 1 and 2. Fixed objects are colored in black. Objects in different
“levels” are different colors (orange, purple, and green) and have
no collision interaction. White circles indicate a bilateral point-
to-point constraint. In figure 2, the green circles indicate contact
points. Both systems can be simulated robustly at a consistent
framerate of 20–30Hz on an SGI R4400 workstation.
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Appendix A: Theorems
In this appendix, we prove some theorems necessary to show that

the algorithm for frictionless contact forces in section 4 terminates.
For simplicity, we consider only the case whenA is nonsingular and
sketch the modifications necessary ifA is singular.

THEOREM 2 Let the symmetric positive definite matrixA be par-
titioned as in equation(7). If x satisfiesA11x = �v1, then the
quantityvT

1x+ � is always positive.

PROOF. Principal submatrices ofA are positive definite, so� > 0,
A11 is positive definite and the submatrix�

A11 v1

vT
1 �

�
is positive definite. Applying a Cholesky factorization, we can
write�

A11 v1

vT
1 �

�
=

�
L 11 0
LT

12 L 22

��
LT

11 L 12

0 L22

�
(25)

whereL 11 andL 12 have the same dimensions asA11 andv1 respec-
tively, andL 22 is a positive scalar. Note that sinceA11 = L 11LT

11
is invertible, L 11 is also invertible andA�1

11 = L�T
11 L�1

11 . From
equation (25), we havev1 = L 11L 12. SinceA11x = �v1, we also
havex = �A�1

11 v1. Then

vT
1x+ � = �� vT

1A�1
11 v1

= �� (LT
12L

T
11)A

�1
11 (L 11L 12)

= �� LT
12L

T
11L

�T
11 L�1

11 L 11L 12

= �� LT
12L 12:

From equation (25) we have� = LT
12L 12 + L 2

22; thus

vT
1x+ � = �� LT

12L 12 = L 2
22: (26)

SinceL 22 is positive,vT
1x + � is positive. 2

Almost the same result applies whenA is not invertible. In this
case,A11 may be singular; note however that a Cholesky factoriza-
tion can still be obtained althoughL 11 may now be singular. Since it
is still the case thatA11 = L 11LT

11, andL 11 andL 11LT
11 have exactly

the same column space, the fact thatv1 = L 11L 12 implies thatv1 is
in the column space ofA11. Thus, the equationA11x = �v1 will
always have a solution. Using basic continuity principles4 it can be
shown that in the singular case,vT

1x + � � 0.

THEOREM 3 During a given call to drive-to-zero, the same index
set C is never repeated.

PROOF. Suppose some index setC was repeated during a call to
drive-to-zero. SinceC[NCremains constant during a given invoca-
tion of drive-to-zero(except at the last step, where the driving index
d is added toC), wheneverC is repeated,NC is repeated as well.
Let the values ofƒ the first time and second timeC is encountered
be denotedƒ(1) andƒ(2) respectively. Leta(1) = Aƒ(1) + b and
a(2) = Aƒ(2) + b. The intuition of the proof is simple: if the
algorithm could have increasedƒ along a straight line fromƒ(1)

to ƒ(2), it would have done so. The fact that it did not means that
increasing fromƒ(1) to ƒ(2) must have required a change betweenC
andNC. We show that this cannot happen because of the inherent
convexity involved, contradicting the fact thatC was repeated.

Specifically, we havea(1)i = a(2)i = 0 for all i 2 C anda(1)i � 0

anda(2)i � 0 for all i 2 NC. Given C andNC, the vectorƒ is
increased in the direction�ƒ where�ƒi = 0 for i 2 NC,�ƒd = 1
and�ai = 0 for i 2 C. However, the vector

y =
ƒ(2) � ƒ(1)

ƒ(2)d � ƒ(1)d

(27)

fulfills all the conditions for�ƒ, sinceyd = 1, yi = 0 for i 2 NC,
and the vector

Ay =
A(ƒ(2) � ƒ(1))

ƒ(2)d � ƒ(1)d

=
a(2) � a(1)

ƒ(2)d � ƒ(1)d

(28)

has itsith component equal to zero for alli 2 C. Thus, whenC was
first encountered,�ƒ = y was chosen. Ifad = 0 could have been
achieved by increasingƒ in this direction,drive-to-zerowould have
terminated, andC would not have been repeated. This means that
in increasing fromƒ(1) in the direction�ƒ = y, it was necessary to
changeC andNC prior to reachingƒ(2); that is for some valuet in
the range 0< t < 1, either�

A(ƒ(1) + t(ƒ(2) � ƒ(1))) + b
�

j
< 0 (29)

for somej 2 NC or�
ƒ(1) + t(ƒ(2) � ƒ(1))

�
j
< 0 (30)

for somej 2 C. However, since neither of the above two equations
are satisfied whent = 0 or t = 1, and the equations involve only

4If A is a symmetric PSD singular matrix, then there exist arbitrarily small
perturbation matrices� such thatA + � is symmetric positive definite (and
hence nonsingular).
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linear relations and inequalities, by convexity, neither of the two
above equations are satisfied for any value 0< t < 1. This
contradicts the assumption that the same setC was encountered
twice during a call ofdrive-to-zero. 2

This theorem also extends to the algorithm for static friction in
section 5. Namely, we claim that the index setsC, NC, CF, NC�

andNC+ are never repeated while driving a given force variable
ƒNd or ƒFd. The proof is exactly the same, the only difference being
that extra conditions of the form�ƒFi = ���ƒNi may be present.
However, given thatƒ(1) andƒ(2) satisfy these extra conditions, any
vectorƒ(1)+t(ƒ(2)�ƒ(1)) for 0 < t < 1 will satisfy these properties
as well. Again, this means that the algorithm should have gone
directly fromƒ(1) to ƒ(2), contradicting the fact that the index sets
were repeated.

The last two theorems guarantee that the frictionless algorithm
never takes steps of size zero, as long as the system is not degener-
ate. Adegenerate problem(not to be confused withA being singu-
lar) is one that would require the algorithm to to make two or more
changes in the index setsC andNC at exactly the same time (for
example, if two normal forces decreased to zero simultaneously).
When degeneracy occurs, it is possible that some number of size
zero steps are taken. Cottle[5, section 4.2, pages 248–251] proves
that the frictionless algorithm cannot loop due to degeneracy.

Proving that a nondegenerate problem never takes steps of size
zero is relatively straightforward. We need to show that whenever
i 2 C moves toNC, ai immediately increases. As a result,i cannot
immediately move back toC without taking a step of nonzero size.
Similarly, we need to show that wheneveri 2 NC moves toC, ƒi

immediately increases.

THEOREM 4 In a nondegenerate problem, when an index i moves
from C to NC, ai immediately increases.

PROOF. Without loss of generality, letC = f1; 2; :::; k� 1g and
let us assume that thekth contact has just moved fromC to NC.
When k was still in C, we computed�ƒi by solving the system
A11x = �v1 and setting�ƒi = xi . Let A11 andx be partitioned
by

A11x =

�
B w
wT �

��
u
y

�
=

�
z
c

�
= �v1 (31)

whereB 2 R(k�1)�(k�1), u;w; z 2 Rk andy, �, andc are scalars.
This yields

u = B�1
(z� wy) and wTu = c� �y (32)

or
wTB�1(z� wy) = c� �y: (33)

Since this�ƒ causedƒk to decrease to zero,�ƒk = y must have
been negative.

Oncek moves intoNC and we recompute�ƒ, we need to show
the new�ak will be positive. Let~u and~y denote the new values
computed foru andy when we resolve for�ƒ. Sincek is now in
NC, we set�ƒk = ~y= 0, and solve

B~u +w~y = z (34)

to obtain
~u = B�1z: (35)

From equations (8) and (31), the new�ak is

�ak = wT~u+ �~y� c = wT~u� c: (36)

Substituting from equations (35) and (33), we have

�ak = wTB�1z� c

= �wTB�1wy� �y (37)

= �y(wTB�1w + �):

SinceA11 is positive definite,B�1 is positive definite, and� is
positive, sowTB�1w + � must be positive. Sincey is negative,
�y is positive, and we conclude that�ak > 0. 2

This theorem extends immediately to the case whenA is singular,
because the index setsC encountered never produce a singular
submatrixA11.

THEOREM 5 In a nondegenerate problem, when an index i moves
from NC to C, ƒi immediately increases.

PROOF. The proof is constructed in the same way as the proof of
the previous theorem.2
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Figure 1: Time-lapse simulation sequence of a blockfeeder.
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Figure 2: Time-lapse simulation sequence of a double-action jack.
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