SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

Fast Contact Force Computation for
Nonpenetrating Rigid Bodies

David Baraff

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract solving linear complementarity problems. It is not our intention
A new algorithm for computing contact forces between solid to reinvent the wheel; however, it is necessary to first understand
objects with friction is presented. The algorithm allows a mix Dantzig's algorithm and why it works for our frictionless sytems
of contact points with static and dynamic friction. In contrast to before going on to consider the more general solution algorithm
previous approaches, the problem of computing contact forces is notwe propose to deal with friction. We give a physical motivation
transformed into an optimization problem. Because of this, the need for Dantzig's algorithm and discuss its properties and implemen-
for sophisticated optimization software packages is eliminated. For tation in section 4. For frictionless systems, our implementation
both systems with and without friction, the algorithm has proven of Dantzig's algorithm compares very favorably with the use of
to be considerably faster, simpler, and more reliable than previous large-scale, sophisticated numerical optimization packages cited by
approaches to the problem. In particular, implementation of the previous systems[11,7,8,6]. In particular, for a system withilat-
algorithm by nonspecialists in numerical programming is quite fea- eral constraints, our implementation tends to require approximately
sible. three times the work required to solve a square linear system of
size n using Gaussian elimination. Most importantly, Dantzig's
algorithm, and our extensions to it for systems with friction, are
1. Introduction sufficiently simple that nonspecialists in numerical programming
In recent work, we have established the viability of using analyt- can implement them on their own; this is most assuredhtytrue
ical methods to simulate rigid body motion with contact[1,2,3]. In of the previously cited large-scale optimization packages.
situations involving only bilateral constraints (commonly referred Interactive systems with bilateral constraints are common, and
to as “equality constraints”), analytical methods require solving there is no reason that moderately complicated interactive simu-
systems of simultaneous linear equations. Bilateral constraints typ-lation with collision and contact cannot be achieved as well. We
ically arise in representing idealized geometric connections such strongly believe that using our algorithms, interactive simulations
as universal joints, point-to-surface constraints etc. For systemswith contact and friction are practical. We support this claim by
with contact, unilateral (or “inequality”) constraints are required demonstrating the first known system for interactive simulations
to prevent adjoining bodies from interpenetrating. In turn, the involving contact and a correct model of Coulomb friction.
simultaenous linear equations arising from a system of only bilateral
constraints must be augmented to reflect the unilateral constraints; o
the result is in general an inequality-constrained nonlinear mini- 2- Background and Motivation
mization problem. Lotstedt[10] represents the first attempt to compute friction forces
However, analytical techniques for systems with contact have in an analytical setting, by using quadratic programming to compute
yet to really catch on in the graphics/simulation community. We friction forces based on a simplification of the Coulomb friction
believe that this is because of the perceived practical and theoreticalmodel. Baraff[3] also proposed analytical methods for dealing with
complexities of using analytical techniques in systems with contact. friction forces and presents algorithms that deal with dynamic fric-
This paper has two goals, one of which is to address these concernstion (also known as sliding friction) and static friction (also known
in particular, we present analytical methods for systems with contact as dry friction). The results for dynamic friction were the more
that can be practically implemented by those of us (such as thecomprehensive of the two, and the paper readily acknowledges that
author) whoare not specialists in numerical analysis or optimiza- the method presented for computing contact forces with static fric-
tion. These methods are simpler, reliable, and faster than previoustion (a Gauss-Seidel-like iterative procedure) was not very reliable.
methods used for either systems with friction, or systems without The method also required an approximation for three-dimensional
friction. systems (but not for planar systems) that resulted in anisotropic
Our other goal is to extend and improve previous algorithms for friction. Finally, the results presented did not fully exploit earlier
computing contact forces with friction[3]. We present a simple, fast discoveries concerning systems with only dynamic friction, and no
algorithm for computing contact forces with friction. The restriction static friction.
of our algorithm to the frictionless case is equivalent to an algorithm In this paper, we present a method for computing contact forces
described in Cottle and Dantzig[4] (but attributed to Dantzig) for with both dynamic and static friction that is considerably more
robust than previous methods. Our method requires no approxima-
tions for three-dimensional systems, and is much simpler and faster
paper for noncommercial use provided that the title and this copyright notice than previous methods. We were extremely surprised to find that

appear. This electronic reprint 1994 by CMU. The original printed our implemeﬁtation of the method, applied to frictionless systemsz
paper iS©1994 by the ACM. was a large improvement compared with the use of large-scale opti-

mization software packages, both in terms of speed and, especially,
Author address (May 1994): David Baraff, School of Computer Science,

Carnegie Mellon University, Pittburgh, PA 15213, USA.
Email: baraff@cs.cmu.edu

This is an electronic reprint. Permission is granted to copy part or all of this

23

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

simplicity.! Previous simulation systems for frictionless contact remain in contact (although the relative tangential acceleration may
that we know of have used either heuristic solution methods basedbe nonzero). To prevent interpenetration we reqaiite 0 for each

on linear programming[11], quadratic programming algorithms[7], contact point.

or constrained linear least-squares algorithms[6]. In all cases the For frictionless systems, the force acting between two bodies at
numerical software required is sufficiently complicated that either a contact point is normal to the contact surface. We denote the
public-domain or commercially available software packages are magnitude of the normal force between the bodigs lay the scalar
required. The problems with this are: fi. A positive f; indicates a repulsive force between the bodies at

e Serious implementations of linear programming codes are Pis while a negativef; indicates an attractive force. Since contact

much less common than serious implementations for solving forces mustbe repulsive, a necessary conditiofi isfi > 0. Also,
linear systems. Serious implementations for quadratic pro- Since frictionless contact forces are conservative, we must add the

gramming are even rarer. condition fia; = O for each contact point. This condition requires
) .) thatatleast one gf anda be zero for each contact: eith@r= 0

o A fallr amount of mathematlcalland coding sophlstlcatl.on IS and contact remains, ar > 0, contact is broken, anfd is zero.
required to interface the numerical software package with the \ye will denote ther-vector collection ofi’s asa; theith element
simulation software. In some cases, the effort required for an f 5 js .. The vectorf is the collection of thef’s. (In general,
efficient interface was prohibitively high[12]. boldface type denotes matrices and vectors;ithelement of a

¢ The packages obtained contained a large number of adjustablevectorb is the scalati, written in regular type. The symbd
parameters such as numerical tolerances, iteration limits, etc. denotes on appropriately sized vector or matrix of zeros.) The
It is not uncommon for certain contact-force computations to vectorsaandf are linearly related; we can write
fail with one set of parameters, while succeeding with another,
or for a problem to be solvable using one software package, a=Af+b 1)
but unsolvable using a different package. In our past work in
offline motion simulation, reliability has been a vexing, but
tolerable issue: if a given simulation fails to run, one can
either alter the initial conditions slightly, hoping to avoid the
specific configuration which caused the difficulty, or modify

whereA € R™" is symmetric and positive semidefinite (PSD),

andb € R"is a vector in the column space Af(that is,b = Ax

for some vectox). The matrixA reflects the masses and contact

geometries of the bodies, whitereflects the external and inertial

the software itself prior to rerunning the simulation. This force; n the system. At any instant of _t|mle,and b. are kr_]0wn

approach is clearly not practical in an interactive setting. quantities whilef is the unknown we are interested in solving for.
The problem of determining contact forces is therefore the prob-

e Along the same lines, it is difficult to isolate numerical prob- |em of computing a vectof satisfying the conditions
lems during simulation, because of the complexity of the soft-

ware packages. Unless great effort is put into understanding a>0 fi>0 and fia =0 (2)

the internals of the code, the user is faced with a “black box.” . . .

This is desirable for black-box code that is bullet-proof, but a for each contact point. We will call equation (2) thermal force

serious impediment when the code is not. conditions. Using equation (1), we can phrase the problem of
Given these hurdles, it is not surprising that analytical methods determining a suitablg in several forms. First, sincg anda are

for systems with contact have not caught on yet. Our recent work constrained to be nonnegative, the requirement figat= 0 for

has taught us that the difficulties encountered are, in a sense, self.£achi is equivalent to requiring that

created. In computing contact forces via numerical optimization, we n

translate a very specific problem (contact-force computation) into a Z fia = fla=0 (3)

much more general problem (numerical optimization). The trans-

lation loses some of the specific structure of the original problem, =1

making the solution task more difficult. The approach we take in since no cancellation can occur. Using equation (1), we can say that
this paper is to avoid (as much as possible) abstracting our specific f must satisfy the conditions

problem into a more general problem. The result is an algorithm

that solves a narrower range of problems than general purpose Af+b>0, f>0 and fT(Af +b)=0. 4
optimization software, but is faster, more reliable, and considerably
easier to implement. Equation (4) defines what is known as a linear complementarity

problem (LCP). Thus one solution method for computing contact
forces is to formulate and solve the LCP of equation (4). We

3. COOtaCt MOde| _ _ _ can also compute contact forces by considering the conditions of
Inthis sectionwe will deflngthe structure ofthe smple;t problem equation (2) as a quadratic program (QP): we can equivalently say
we deal with: a system of frictionless bodies contactingdistinct that a vectorf satisfying equation (4) is a solution to the quadratic

points. For each contact poiptbetween two bodies, let the scalar program
a denote the relative acceleration between the bodies normal to the
contact surface gii. (We will not consider the question of impact
in this paper; thus, we assume that the relative noxrakicity of
bodies at each contact is zero.) We adopt the convention that a
positive acceleratios; indicates that the two bodies are breaking Phrasing the computation ¢fas a QP is a natural choice. (The
contact api. Correspondinglya < 0 indicates that the bodies problem of solving QP's has received more attention than the prob-
indicates that the bodies have zero normal acceleratign aid can be practically solved whehis PSD.) Having transformed the
1Actually, not being numerical specialists, any working numerical software problgm of Computlng Contaclt forces into a QP, we have a varlety of
' ' techniques available for solving the QP. Unfortunately, by moving

we were capable of creating would have to be simpler. We automatically t0 an optimization robIem—minimizﬁ(Af+b)—we necessaril
assumed however that such software would be slower than the more com-, p P y

prehensive packages written by experts in the field. lose sight of the original conditiofia; = 0 for each contact point.
Because of this, we are solving a more general, and thus harder,

minf'(Af +b) subjectto {Aflj_zboz 0} . (5

24

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

problem than we really need to. In developing an algorithm, we fi = 0foralli € NC. Throughout the algorithm, we will attempt to

prefer to regard the relationship betweganda in terms of the maintaing; = 0 whenever € C. Similarly, we will try to maintain

n separate conditiongiai = 0 in equation (2) rather than the fi = 0 whenevei € NC. Wheni € C, we say that théth contact

single constrainf’a = 0 in equation (4) or the minimization of point is “clamped,” and whehe NC we say theth contact point

fTaiin equation (5). In the next section, we describe a physically- is “unclamped.” (Ifi is in neither, theéth contact point is currently

motivated method for solving equation (2), along with a practical being ignored.)

implementation. Following this, we consider friction in section 5. For a unit increase qf, (that is, if we increasé, to fn + 1) we

must adjust eacfii by some amounAfi. Let Af, = 1, and let us

o setAfi = 0 foralli € NC, since we wish to maintaify = 0 for

4. Frictionless Systems i € NC. We wish to choose the remainidyfi's for i € C such that

In this section we present a restriction of our algorithm for com- Ag = Ofori € C. The collectionAa of the Aa’s is defined by

puting contact forces with friction to the frictionless case. We also

sketch a proof of correctness. We extend the algorithm in section 5 Aa=A(f+ Af) +b— (Af +b) = AAf (6)

to handle static friction, and dynamic friction in section 6. A de-

scription of Dantzig’s algorithm for solving LCP’s, and an excellent

treatment of LCP’s in general can be found in Costlel [5].

whereAf denotes the collection of th&f;’s.

Intuitively, we picture the forcefi at a clamped contact point
undergoing some variation in order to maintain= 0, while the
force at an unclamped contact remains zero. Modifications of this
4.1 Algorithm Outline sort will maintain the invariant thgia, = Oforall1 <i <n-—1.

Dantzig’s algorithm for solving LCP’s is related to pivoting SinceC currently hak elements, computing the unspecifiadi’s
methods used to solve linear and quadratic programs. The majorr€quires solving linear equations ik unknowns. (In general’
difference is that all linear and most quadratic programming algo- Will vary in size during the course of the algorithm. At any point
rithms begin by first finding a solution that satisfies the constraints N the algorithm when we are establishing the conditions attthe

of the problem (for usAf + b > Oandf > 0) and then tryingto ~ contactC will containr — 1 or fewer elements.)
minimize the objective function (for u$,TAf T fTb). However, we also need to maintain the conditigns> 0 and

In contrast, Dantzig’s algorithm, as applied to the problem of & = 0. Thus, as we increaga, we may find that for somee C,
computing contact forces, works as follows. Initially, all contact fi as decreased to zero. At this point, it may be necessary to

points but the first are ignored, affidis set to zero for all. The unclamp this contact by removingrom C and adding it toNC,
algorithm begins by computing a value farthat satisfies the nor- SO that we do not causfe to decrease any further. Conversely, we
mal force conditions—equation (2)—for= 1, without worrying may_flnd that for somee NC, a has decreased to a valu_e of zero.
about those conditions holding for any otfeNext, the algorithm In this case, we will wish to clamp the contact by movinigom

computes a value fg that satisfies the normal force conditions for NCinto C, preventings, from decreasing any further and becoming

i = 2 while maintaining the conditions for= 1. This may require negative. The process of moving the various indices bet@eeT
modification offy. The algorithm continues in this fashion: atany NCIiS exactly the numerical process known as pivoting. Given that
point, the conditions at contact points<li < k — 1 are satisfied ~ We Start with suitable values fdf throughfn-1, computingfn is

for somek andfi = 0 fori > k, and the algorithm determings, straightforward.’ We sef\fn = 1 andAfi = O fori € NC, and
possibly altering some of the’s for i < k, so that the conditions ~ SOlve for theAfi's fori € Cso thatAa = O for alli € C. Next,
now hold for alli < k. When the conditions hold for afi contact we choose the smallest scaga> 0 such that increasingby sA f
points, the algorithm terminates. causes eitheai, to reach zero, or some indéxo move betwee®

To make this concrete, imagine that we have so far computed @dNC. If &, has reached zero, we are done; otherwise, we change
valuesf; through fa_1 so that the normal force conditions hold ~the index set€ andNC, and loop back to continue increasifig

everywhere except possibly at théh contact point. Suppose that We now describe the process of computilvg along with the
with fn still set to zero we have, > 0. If so, we immediately step sizes. Afterthls,we present the complete algorithm and discuss
have a solutiorf that satisfies the normal conditions atratfontact Its properties.

points.

Suppose however that f¢fg = O we havea, < 0. Our physical 4.2 The Pivot Step

intuition tells us that since we currently hafie= 0, the problem ; I
X : L i The relation between the vect@andf is given bya = Af +b.
is that thenth contact force is not doing its fair share. We must Let us continue with our example in whi@ = {1,2, ..., k} and

cheasefﬂ until _vvle _reacﬂ the pomltfthain IS zg_rc_), and we mufsth NC = {k+1,k+2,..,n— 1}. We need to computA f and then
ﬁ% tsr? W'tl (c):gtnggtasgi?ltts € Sniﬁ::rgailnc?ggii;;nmgl)?gi;r:gzngoomé € determine how large a multiple & f we can add t¢f. Currently,
of thea’s, we will generally need to modify the othérvariables we havea, < 0. Letus partitionA andAf by writing
as we increasg¢,. Our goal is to seek a strength ffr that is just A A w1 X
sufficient to cause, to be zero. (We emphasize that this is not a A= AIz Axr Vo and Af = 0 (7)
process which takes place over some time intev t; during a vi VI o« 1
simulation; rather, we are considering the proper valueftehould
assume at a specific instant in time.) where A1; and Ay, are square symmetric matricegs € R,
The adjustments we need to makeftothrough fn—1 as we vo € R™Y=K 4 is a scalar, anat € R¥is what we will need
increasef» are simple to calculate. Since the order in which contacts to compute. The linear systetxa = AAf has the form
are numbered is arbitrary, let us imagine that for the current values

of the fi's we havea; = a; = ... = a = 0 for some value X AuXx+vi
0<k<n-1andforalk+1<i < n-1,wehaves > 0. Aa=AAf=A| 0 | = AlX+Va | . (8)
Remember that, < 0. To simplify bookkeeping, we will employ 1 ViX + a

two disjoint index set€€ andNC. At this point in the algorithm,)) .
letC = {1,2,..,k}; thus,a = O foralli € C. Similarly, let Since the firstk components ofAa need to be zero, we require
NC = {k+ 1,k +2,..,n — 1}; sincea > O foralli € NC, Aux+vi = 0; equivalently, we must solve

and we have assumed thfaty = 0 fori < n — 1, it must be that AuX = —vy. (9)

25

SIGGRAPH 94, Orlando, July 24-29

CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

After solving equation (9), we computta = AAf, and are
ready to find the maximum step size paramstee can scaleé\ f
by. Foreach € C, if Afi < 0, then the force at thiéh contact point
is decreasing. The maximum step/e can take without forcing;
negative is

fi

_Afi'

Similarly, for eachi € NC, if Aa; < 0 then the acceleratiom is
decreasing; the maximum step is limited by

s<

(10)

ai
s< ——. 11
< iz (1
Since we do not wish, to exceed zero, iha, > 0, the maximum
step is limited by
—an
s< —.
— Aan
Once we determins, we increasef by sAf, which causes to
increase bA(sAf) = sAa. Ifthis causes a change in the index sets
C andNC, we make the required change and continue to increase
fn. Otherwisea, has achieved zero.

(12)

4.3 A Pseudo-code Implementation
The entire algorithm is described below in pseudo-code. The
main loop of the algorithm is simply:

function compute-forces

f=0
a=>hb
C=NC=10

while 3d such that aqg < 0
drive-to-zergd)

The functiondrive-to-zeroincreasesfq until a4 is zero. The
direction of change for the forcé\f, is computed byfdirection
The functionmaxstepletermines the maximum step sgand the
constrain responsible for limitings. If j is in C or NC, j is moved
from one to the other; otherwige= d, meaningag has been driven
to zero, andirive-to-zeroreturns:

function drive-to-zergd)

Lqi:

Af = fdirection(d)

Aa= AAf

(s,j) = maxstepf, a, Af, Aa, d)

f=1f+sAf

a=a+sAa

ifjeC
c=Cc—{j}
NC=NCU{j}
gotoL,

elseifj € NC
NC=NC-{j}
c=cu{j}
gotoL,

else j must be d, implyinga= 0
C=cu{j}
return

The functionfdirection computesAf. We write Acc to denote
the submatrix ofA obtained by deleting thigh row and column of
A forallj ¢ C. Similarly, Acq denotes thelth column ofA with
element deleted for alj ¢ C. The vectoix represents the change

i € C, we assign ta\ f; the element ok corresponding to thgh
contact.)

function fdirection(d)
Af=0
Afa=1
let A1 = Acc
letvi = Acg
solve Aiix = —v1
transfer x into Af
return Af

set allAfi to zero

Last, the functiormaxstepreturns a paixs, j) with s the maxi-
mum step size that can be taken in the directighandj the index
of the contact point limiting the step size

function maxstepf, a, Af, Aa, d)

S= o0
j=-1
if Aag >0
j=d
S= —ay/Aay
forieC
if Afi<O
s =—fi/Af
ifd <s
s=¢
j=i
fori e NC
if Aai <0
s = —a/Aa
ifd <s
s=¢

j=i
return (s,j)

Itis clear that if the algorithm terminates, the solutfonill yield
a > O for alli. Since eaclf; is initially zero and is prevented from
decreasing below zero byaxstepat terminationf; > 0 for alli.
Last, at terminationfia; = O for alli since either € Canda = 0,
ori ¢ Candf; =0.

The only step of the algorithm requiring substantial coding is
fdirection which requires forming and solving a square linear sys-
tem. Remarkably, even A is singular (andA is often extremely
rank-deficient in our simulations), the submatriéas encountered
in the frictionless case are never singular. This is a consequence of
b being in the column space &f

4.4 Termination of the Algorithm

We will quickly sketch why the algorithm we have described
must always terminate, with details supplied in appendix A. Exam-
ining the algorithm, the two critical steps are solviigix = —v;
and computing the step sise First off, could the algorithm fail
because it could not comput® SinceA is symmetric PSD, ifA
is nonsingular ther\ 11 is nonsingular and exists. Even ifA is
singular, the submatrices;1 considered by the algorithm are never
singular, as long ak lies in the column space @&.2 As a result,
the systemA11x = —v; can always be solved. This is however a
theoretical result. In actual practice, wh&is singular itis possible

2A complete proof of this is somewhat involved. The central idea is that if
thejth contact point has not yet been considered and represents a “redundant
constraint” (that is, addinginto C makesA 1 singular) therg; will not be
negative, so there will be no need to adive-to-zeroonj. Similarly, if

in contact force magnitudes at the clamped contacts. The transferj € NCand moving to C would makeA1; singular, it will not be the case

of x into Af is the reverse of the process by which elements are
removed from thalth column ofA to form Acq. (That is, for all

26

thata; tries to decrease below zero, requiring be placed il€. Essentially,
the nonzerdfi’s will do the work of keepingg from becoming negative,
without fj having to become positive, allowijgo remain outside €.

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

that roundoff errors in the algorithm may cause an ind@xenter triangular andJ is upper triangle. Given such a factorizationAif
C so that the resulting matrif1 is singular. This is a very rare has dimension and a new row and column are addedt@r a row
occurrence, but even so, it does not present a practical problem.and column are eliminated frof a factorization of the new matrix
Appendix A establishes that the vectaris always in the column can be recomputed quickly. Unfortunately, the coding effort for
space of the submatrixi; arising fromanyindex seC. Thus, even LuUsoOLis large. One of the authors of th&#¥80L package was kind
if A11is singular, the equatiof;ix = —v; is well-conditioned, and enough to provide us with a modified version of the software[13]
is easily solved by standard factorization methbéis essence, we that treat®\ as a dense matrix and computes a factorizatton= U
assert thatAq; is never singular, and even if it if\11x = —v1 is (whereL is no Iongertriangular). In the dense case, an updated fac-
still easily solved.” torization is obtained i®(n“) time whenA is altered. The modified
Since it is always possible to sole1x = —v; and obtain version contains a reasonably small amount of code. For a serious
Af, the real question of termination must depend on each call to implementation we highly recommend the use of an incremental
drive-to-zerdbeing able to forcey to zero. To avoid being bogged factorization routine.

down in details, let us assume thatis nonsingular, with specific In addition, it is trivial to make the algorithm handle standard
proofs deferred to appendix A; additionally, appendix A discusses bilateral constraints. For a bilateral constraint, we introduce a pair
the necessary extensions to cover the case whés singular. fi anda;, and we constraim; to always be zero while lettinf be
Although the singular versus the nonsingular cases require slightly either positive or negative. Givdasuch constraints, we initially
different proofs, we emphasize thidite algorithm itselfremains solve a square linear system of skeéo compute compute initial
unchanged; that is, the algorithm we have just described works for values for all the bilatergfi’s so that all the correspondiray's are
both positive definite and positive semidefinite zero. Each suchis placed intdC at the beginning of the algorithm.

The most important question to consider is whether incregsing In maxstepwe ignore each indexhat is a bilateral constraint, since
by an amounsA f actually increaseay. Given a changeAf in f, we do not care if thafi becomes negative. As a result, the bilateral
from equation (8) the increasedais i's always stay irC and the bilaterad;’s are always zero. Exactly

T the same modification can be made in the algorithm presented in the
S(vViX + @) = sAay. (13 next section.

Theorem 2 shows that & is positive definiteylx + « is always
positive. Thusag willincrease as long asis always positive. Since 5. Static Friction

vi +a = Aag > 0, this shows thamaxstemever returns with The algorithm of the previous section can be considered a con-
s= oo andj = -1) structive proof that there exists a solutifrsatisfying the normal
Can the algorithm take steps of size zero? In ordenfaxstep force conditions for any frictionless system. The algorithm pre-
to returns = 0, it would have to the case that eithfer= 0 and sented in this section grew out of an attempt to prove the conjecture
Afi < 0for somei € Cora = 0andAg < O for some that all systems with static friction, but no dynamic friction, also

i € NC. Theorems 4 and 5 shows that this cannot happen. Bhus, possess solutions. (The conjecture is false for systems with dynamic
is always positive. Therefore, the only way farto not reach zero friction.) The conjecture currently remains unproven. We cannot
is if drive-to-zerotakes an infinite number of stepAf thatresult — prove that the algorithm we present for computing static friction
in in aq converging to some limit less than or equal to zero. This forces will always terminate; if we could, that in itself would con-
possibility is also ruled out, since theorem 3 in appendix A shows gjtte a proof of the conjecture. On the other hand, we have not yet

that the seC of clamped contact points is never repeated during a seen the algorithm fail, so that the algorithm is at least practical (for
given call todrive-to-zero Thus, drive-to-zerocan iterate only 8 the range of simulations we have attempted so far).

finite number of times befora, reaches zero. Let us consider the situation when there is friction at a contact
point. The friction force at a point acts tangential to the contact
4.5 Implementation Details surface. We will denote the magnitude of the friction force at the

ith contact byfr;, and the magnitude of the relative acceleration in
the tangent plane ag;. We will also denote the magnitude of the
normal force agy;, rather tharf;, and the magnitude of the normal
acceleration aay; rather tharg;. To specify the tangential acceler-
ation and friction force completely in a three-dimensional system,
we would also need to specify th@ectionof the acceleration and
friction force in the tangent plane. For simplicity, we will begin by
dealing with two-dimensional systems. At each contact point; let

will differ from the previous system only by a single row and be a unit vector tangent to the contact surfads;unique except for

column. Although each such system can be solved independently® ?ho'“.-‘ of sggn. Intl_s:_two g'?e?s'o?al system,_\;v%wnlft(rfaa?d
(for example, using Cholesky decomposition), for large problems it a; as signed quantities. A Iriction force magnitu efef denotes
is more efficient to use an incremental approach. a friction force off;ti, and an acceleration magnitudg denotes

In keeping with our assertion that nonspecialists can easily im- an accelerat!on Oditi. Thus, 'faF‘. and fe, ha\{e the same sign,
plement the algorithm we describe, we note that our initial imple- then t_he friction force and tangential acceleration point in the same
mentation simply used Gaussian elimination, which we found to dlrg(t:tlt(.)n.f. " hen th lative t tial velocity at
be completely satisfactory. (Anticipating the developments of the auc Iriction occurs when the relative tangental velocity at a
next section wher\1; is nonsymmetrical, we did not bother to contact point is zero; otherwise, the friction is called dynamic fric-

use a Cholesky factorization, although this would have performed ton- In this section, we will consider only static friction. Any con-
significantly faster.) figuration of objects that is initially at rest will have static friction,

Gill et al[9] describe a package calle/EOL that incrementally but no dynamic friction. Additionally, a “first-order” (or quasistatic)

factors a sparse matri into the formA = LU whereL is lower simulation world where force aneelocityare related byf = mv
also has static friction but never any dynamic friction

The algorithm just described is very simple to implement and
requires relatively little code. The most complicated part involves
forming and solving the linear systefnix = —v;. This involves
some straightforward bookkeeping of the indiceiandNC to
correctly formA1; and then distribute the componentsafito A f.
It is important to note that each call fdirection will involve an
index setC that differs from the previous index s€tby only a
single element. This means that each linear sy#iem = —v;

3Since Ay is both symmetric and PS4, will still have a Cholesky
factorizationA;; = LL T, althoughL is singular. Sincé. can be simply
and reliably computed, this is one possible way of solvingfor

27

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

5.1 Static Friction Conditions |feal = 0 = pfn,. Ifnot, but it happens thar, = 0, again, we
At a contact point with static friction, the magnitusg of the have satisfied the static friction conditions, sifgg| = 0 < ufnp.
relative tangential velocity is zero. If the effect of all the forces in Otherwise,ar,, is nonzero and following our characterization of
the system produces; = 0, meaning that the conditior; = 0 is static friction we must increase the magnitude of the friction force
being maintained, thefr; need satisfy only to oppose the tangential acceleration as much as possible.
The procedure to do this is essentially the same as in the friction-
— N < fr < pffng (14 less case. Without loss of generality, assume that atttheontact

pointar, < 0. We will gradually increasg:-,, while maintaining the
where the scalan denotes the coefficient of friction at the contact static friction and normal conditions at all the otlmes 1 contact
point. (We will not bother to index., over the contact points, points and the normal condition at thth contact point. As we
although this is easily done.) If the tangential acceleration is not increasef,, at some point, one of two things must happen: either

zero, then the conditions df; are more demandingfr;| must be we will reach a point wherge, = pfn,, or we will reach a point
equal topfn; andfr; must have sign opposite thata. whereag, = 0. In either case, the static friction conditions will then
Following the pattern of section 4, we write thfat, an;, fr; and be met.
ar; must satisfy the normal force conditions
fni >0, ay >0 and fyan =0, (15) 5.3 Maintaining the Static Friction Conditions
Once we have established the static friction conditions at a con-
as well as tact point, we need to maintain them. As before, we maintain the
conditionsfn; > 0, an; > 0 andfn;an; = 0 using the index sets
Ifril < wfni, arifey <0 andagi(ufn — |fr]) =0. (16) C andNC. To maintain the conditions on tife; andag; variables,

» . we introduce the setSg, NC~ andNC™. The sefCr is analogous
The conditionar(1ufn; — |fri|) = O forcesfr; to have magnitude o C; wheneveri € Cr, we manipulatefs; to maintainag; = O.
pfw; if @i is nonzero. The conditicar; fr; < Oforcesar; andfr; to (We can haveé € Ce andi € C. The fact thai € Cr means we
have opposite sign, which means that the friction force opposes thegre maintainingas; = 0, while the fact that € C means we are
tangential acceleration. We will call the conditions of equation (16) maintainingan; = 0.) In contrast tcC, if i € NC*, then we have
the static friction conditions unless specifically noted, a contact o 0 andfe, = ufn;. Aslong as € NCT, we varyfg, so that it
point said to satisfy the static friction conditions implies satisfaction is always equlal tf/lfNil- If ar; becomes zero, we mo‘i/élrom NCH

of the normal force conditions as well. . ",
h : . into Ce. Thus,NC* denotes the set of contacts that hfmepositive
The approach taken by previous attempts[10,3] at modeling statlcand at the upper bound pffy,. Conversely, i € NC-, then we

friction has been to form an optimization problem. If we define the

quantity scalaz by havear; > 0 andfr; = —pufn;. Again, as long as € NC™ we
will maintain the conditiorfr; = —ufn;, and mova into Cr if ay;
_ . _ becomes zero. Whenever we are increasing sfager increasing
z= Z(|a’c'|(”f’\“ —IfrD + fN‘aN') 17) or decreasing somg-4, computing the corresponding changes in

i the otherfr; and fy; variables, along with the maximum possible
then the problem becomes step size, is exactly the same as in the previous section.
In the frictionless case, when we managed to daigto zero,

fa >0 aeife <0 we added into C. For static friction, if the driving process stops
min z subject to { 'z } { Hr } . becausesry has reached zero, we inseftinto Cr. Otherwise,
i fri ani 20 |fril < pufn the process stopped becauge,| = wufng and we addd into
Computing contact forces in this manner does not appear to beNC™~ or NC' as appropriate. Before we present our algorithm for
practical. computing static friction forces in two dimensions, we discuss why

the algorithm we present is not guaranteed to terminate.

5.2 Algorithm Outline

We believe it is better to deal with the problem as we did in 5.4 Algorithm Correctness
the frictionless case: as a number of separate conditions. Let us In section 4, we showed that as we increaggdhe acceleration
consider the static friction condition with that perspective. We can a4 always increased in response, guaranteeing that a sufficiently
state the conditions oa; andfr; by considering that the “goal” of large increase ofq would achieveay = 0. We also showed
the friction force is to keep the tangential acceleration as small as that the index se€ would never repeat while forcing a particular
possible, under the restrictidpfr;| < pfn;. Accordingly, whenever aq to zero, guaranteeing we would not converge to some negative
ar; is nonzero we insist that the friction force do its utmost to value. Finally, we showed that steps of size zero would not occur,
“make” ar; be zero by requiring that the friction force push as hard guaranteeing that we would always make progress toveares0.
as possible opposite the tangential acceleration. The reason thafor static friction, we can show all these properties except for the

we find this a useful characterization is that iteissentially the last.

same characterizatiomwe employed in section 4 to motivate the First, let us show that if we start witheqy < 0, as we increase

development of Dantzig’s algorithm. frq, either we will reach a point wheifg; = pfng, or we will reach
In section 4.1, we assumed that the normal force conditions were a point whereagq = 0. This is not obvious. Sincfy, is nonzero

initially met for contacts 1 through — 1 and began witlfn, = 0. (otherwisefry = 0 would satisfy the static friction conditions), we

If this resulted inaw, being nonnegative, then we immediately had must haved € C. This means that as we incregsg, we may also

a solution. Otherwise, it was in a senfg,’s “fault” that an, was be requiring thafng change as well. Ififng increases faster than

negative, and we increas¢d, to remedy the situation. We can do e, does, therfe, will never reach a value Qffng.

exactlythe same thing to compute static friction forces! Suppose Similarly, it is not necessarily the case that increasipgwill

that the firsh— 1 contacts of our system satisfy all the conditions for causear, to increase. The reason for this is the following: the
static friction and that the normal force condition holds for itte relation between the acceleration variables and force variables is
contact point. We s¢, = 0 and consideg,. Ifn € NC,orne C

but fn, = 0, then the static force condition is trivially met since

28

SIGGRAPH 94, Orlando, July 24-29 ComPU

TER GRAPHICS Proceedings, Annual Conference Series, 1994

still linear, and we can write

aNl le
aF1 fFl
a=| : |=aA| : |[+b=Af+b (19
aNn an
aFn an

whereA € R*™? andb € R* andf anda are the collection of the
f andavariables. As long as we have no dynamic friction, it is still
the case thah is symmetric and PSD. For a unit increas¢p, we
solve forAfy; andAfr; exactly as we did in section 4. That is, for
i € C, we requireAay; = 0, and for all other, we haveA fy; = 0.
For the friction forces, almost the same holds:iferCr we require
Aar; = 0. However, fori € NC™, instead of setting\fr; = 0,
we requireAfr; = —uAfy;, to maintainfr; = —pfn;. Similarly,
fori € NCt we requireAfr; = pAfn; to maintainfe; = ufn;.
The side conditiong\ fr; = uAfn; prevent us from applying
theorem 2 as we did in section 4 and claiming #atincreases as
frq increases. In fact, in some situations, increagingwill cause
arq to decrease The same holds fofng as well; prior to working
on fry we may find that increasinfy to establish the normal force
conditions may cause caus®g to decrease.

Is it possible then that we can drive soffag or fng infinitely far
without reaching a stopping point? Fortunately, itis not. Theorem 3
of appendix A states that for frictionless systems, as we increase
fn; the index seC never repeats. Exactly the same theorem is
trivially extended to cover static friction. Thus, we will never
encounter exactly the same s€sNC, Cr, NC~ andNC' while
driving a givenfn, or fr, variable. We can use this to show that
increasingfny Will eventually causeany to increase. Exactly the
same argument shows that increasfiag eventually causeasq to
increase.

THEOREM 1 In a problem with static friction only, ifiy < Oand
fng = Ohold initially, a large enough increase im fwill eventually
force ayq to increase.

PROOF. Suppose that we could arbitrarily incregsg without
causingang to increase. Sincd is positive definite, in light of
theorem 2 this can only happen if one or more of the side conditions
Afe; = £uAfn; hold, implying thatNC™ U NC* # (). Since the
index setsC, NC, C;, NC~ andNC™ never repeat, there are only
finitely many combinations of those sets that can be encountered
while increasingfng. That means that we can only undergo finitely
many changes of the sets while increading Eventually, we settle
into a state where we can incregsg without ang increasing and
without any change occurring in the index sets.

However, this cannot be, because of the definition of the index

sets. Foii € C, to avoid a change in index sets, we must have
Afn; > 0; otherwise, a sufficiently large step will moivento NC.
The same logic requires that foe NC we must havelay; > O,
otherwisea; will fall to zero. This yieldsA fn;Aayn; = 0 for alli.
For the friction forces, if € Cr, thenAar; = 0 soAar;Afr; = 0.
Fori € NC', we havear; < 0, requiringAar; < 0 to avoid
having to move from NC* to Cr. SinceAfy; > 0 for alli and
Afr = pAfn;, we haveAfr; > 0. This yieldsAar;Afr; < 0 for
alli € NC*. A symmetric argument holds, yieldin§ar; Afr; < 0
foralli € NC™.

Additionally, for at least on@in NC~ or NC", both Aag; and
Afe; are nonzero; otherwise, we could remove each side condition
Afr = £pAfn; and add the conditionA fr; = 0 andAar; = 0
without altering any otheA fn; or Afr;. If we did so however,
we would then be entitled to apply theorem 2, contradicting our
assumption thaang is nonincreasing. Thus, for at least aonee

29

haveAar; A fr; strictly less than zero. Combining that with the fact
thatAanAfn; < 0andAariAfr; < 0for alli we obtain

> AauAfn+ Y AskiAfe = AdAf <O, (19)

SinceAa = AAf, this gives us

Aa'Af = AfTAAf <O. (20)
SinceAf is nonzero and is PSD, this is a contradiction (everAf

is singular). Thusfng cannot be increased without bound without
eventually causingng to increase.O

However, there is still the possibility of taking steps of size zero,
and this is something that can and does occur when running the
algorithm. Theorems 4 and 5 may fail to hold because of the side
conditionsAfr; = £uAfy;. The following scenario is possible:
for somei € C, fn; decreases to zero. Accordinglys moved from
C to NC. Upon computingAf with the new index set, we may
find thatAan; < O (which is ruled out in the frictionless case by
theorem 4). As aresult, a step of size zero is takenj @thoved
backinto C. Clearly, the algorithm settles into a loop, alternately
moving i betweenC and NC by taking a step of size zero each
time. We cannot rule this behavior out in our algorithm for static
friction. (This is also our current sticking pointin trying to prove the
conjecture that all systems with only static friction have solutions.)
Fortunately, we have found a practical remedy for the problem.

While attempting to establish the normal force or static friction
conditions at some poirk, if we observe that a variableis al-
ternating betweer€ and NC (or betweenNC~ and Cr or NC*
andCg), we remove from both CandNC (or from Cr andNC™
or NC*). Temporarily, we will “give up” trying to maintain the
normal or static friction conditions at thtéh contact point. We do
so at the expense of making “negative progress,” in the sense that
although we will have achieved our immediate goal (establishing
normal or friction conditions at a particular contact point), we will
have done so by sacrificing normal and/or static friction conditions
previously achieved at other contacts. The algorithm will be forced
to reestablish the conditions at the points we have given up on at
some later time. Since contact points no long necessarily keep
their static friction or normal force conditions once established, we
cannot prove (as yet) that this process will ever terminate.

We have however used this algorithm on a large variety of
problems, and we have never yet encountered any situation for
which our algorithm went into an infinite loop. We speculate that
either no such situation is possible, meaning that all systems with
static friction have solutions, or it requires an extremely carefully
constructed problem to cause our algorithm to loop (although the
latter possibility does not necessarily imply that there is in fact no
solutionf). A third possibility of course is that we simply have not
sufficiently exercised our simulation system.

5.5 Algorithm for Computing Static Friction Forces

We now describe the necessary modifications to Dantzig’s algo-
rithm to handle static friction forces. The modifications increase the
complexity of the “logical” portion of the algorithm, but the heart
of the numerical code, computinif, remains the same. We give a
description of the necessary modifications of each procedure of the
algorithm.

Modifications to compute-frictionless-forces

The setsC, NC, Cr, NCT, andNC™ are all initially empty. The
main loop continually scans for a contact point at which the normal
or static friction conditions are not met. If no such points exist, the
algorithm terminates, otherwisérive-to-zerois called to establish

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

the conditions. Note that one must first establish the normal force dimensions, giver\ fy; and Afg;, determining the step sizeso
conditions at a given point before establishing the static friction thatfr; + SAfr; = u(fn; + SAfy;) is trivial. In three dimensions,
conditions there. In the event that the algorithm gives up on a computings > 0 so that

contact poini which has the normal conditions established, it will

do so becausgy; is oscillating betweei€ andNC. At this point (i + SAFx) + (fy + SAfy)? = (u(fn; +SAFN))* (23
fni = 0, and the normal conditions can be reestablished later.
If however we give up on the static friction conditions at ithe is also trivial. As a result, it is easy to augmenéxstego movei

contact point,fr; may be nonzero. (We cannot discontinuously into NG whenfx? + fy5 = (ufn;)? and also easy to detect when
set fr; to zero as this might break the conditionsaditthe other to movei back intoCr. Wheni moves intoNCr, we record the
contact points.) Later, when the algorithm attempts to reestablish direction that the friction force is pointing in. As long ia®mains

the static friction conditions &twe first drivefg; to zero (simply by in NCr, we require the friction forcéfy;, fy;) to maintain the same

instructingdrive-to-zerato increase or decreagg, until fg; = 0). direction it had when most recently enteredCr. Oncei moves
back intoCr, the pair(fx;, fy;) may point in any direction.

Modifications to drive-to-zero To initially establish the static friction conditions f; andfy,,

we first increasdy; (assuminggay; < 0) until eitheri moves into
This function is the same, except that there are more ways for NCg, or a; reaches zero. ffis in NCg, we are done, otherwise, we
the index sets to change. If the limiting constrgimeturned by now adjustfyi so that eitheayi reaches zero, armoves intoNCk.

maxsteps the index of the force being drivejis moved intoC if Reversing the order with which one considemndy, or rotating
it represents a normal force, and otherwise BipNC ™, or NC* the local coordinate system in the tangent plane may give rise to
as appropriate; the procedure then returns. Otheryvisenoved different solutions of with this method. This is a consequence of

betweenC and NC if it represents a normal force, and otherwise the condition of equation (21), which does not completely specify
betweerCr andNC™ or NC* as appropriate. [fattempts to move the direction of friction when the tangential acceleration is nonzero
into a set it just came from, and the previous step size was zero, at a contact point.

j is removed from whatever index set it was in. This is the point

at which the algorithm temporarily gives up on maintaining the

conditions at thgth contact point. 6. Dynamic Friction
If the relative tangential velocity at a contact point is nonzero,
Modifications to fdirection then dynamic friction occurs, as opposed to static friction. Re-

gardless of the resulting tangential acceleration, the strength of the
The modifications are minor. First, if we are driving a normal force, friction force satisfies

we setAfng = 1, otherwise we seh fry = +1, depending which Ifeil = pfni, (24)

way we want to drive the force. The index sets establish the set o))

of equations to solve: far € NC, we setAfy, = 0; fori € C with the direction of the force exactly opposite the relative tan-
we requireAayn; = 0; fori € Cr we requireAar; = 0; and for gential velocity. Sincefr; is no longer an independent variable,

i € NCT UNC™ we requireA fe; = +Afn;. when we formulate equation (18), we can replace all occurences

of fr; with £4fn;. This replacement results in a matéxwhich
is unsymmetric and possibly indefinite as well. Because of this,

Modifications to maxstep systems with dynamic friction can fail to have solutions for the

The modifications here are obvious. For each merjinesn index contact force magnitudes, requiring the application of an impulsive
set, we compute the minimum step sizthat cause$ to need to force. Another consequenceAfosing symmetry and definiteness
change to another set. For the driving indewe compute the step isthatall the theorems in this paper which reqéite be symmetric
size that causes us to reamly = 0 for a normal force, angkq = 0 and PSD fail to hold. Remarkably, this turns out to be a fortunate
or frq = Lufngy for a friction force. The minimum stepthat can development.) _)
be taken, along with the constrajntesponsible for that limit, is ~ Previously, Baraff[3] presented an algorithm for computing fric-
returned. tion forces and impulses for systems with dynamic friction but no

static friction; the intent was to treat the problem of nonexistence
]] of a solutionf. Baraff’s method for computing either regular or
5.6 Three-dimensional Systems impulsive forces for systems with dynamic friction involved using
We have been assuming that our system is two-dimensional. TheLemke's algorithm([5] for solving LCP’s. It is noted that Lemke’s
extension to three dimensions is straightforward.At each contact algorithm can terminate by encountering an “unbounded ray.” The
point, let us denote vectorse R® tangent to the contact surface as algorithm we have just presented for static friction requires abso-
pairs(x,y) by choosing a local coordinate system such {fiad) lutely no modifications to handle dynamic friction in this manner.
and (0, 1) denote an orthornormal pair of tangent vectors. Let An unbounded ray corresponds to finding a state in which one can
(&, &;) and (fx;, fy;) denote the relative tangential acceleration drive a variablefy; or fr; to infinity without forcingan; or ag; to
and friction force, respectively, at thtéh contact point. In three zero, or inducing a change in the index $&tsIC, Ce, NCT orNC™.
dimensions, the Coulomb friction law requires that the friction force \when this occurs, itis easily detected, in thetxstepeturns a step
be at least partially opposed to the tangential acceleration; thatsjze ofs = co. Note that theorem 2 tells us that an infinite step

IS, cannot occur ifA is symmetric and PSD. which means that infinite
(fxi fyi) « (8, 8y;) = friaxi + fyay < 0. (21) steps are possible only if there is dynamic friction in the system.
The optimization approach taken in previous work[10,3] makes Either our algorithm finds a solutiofy or at some poins = oo,
enforcing|fe;| < pfw; difficult, because and the current force directiahf matches the definition proposed
"= : ' by Baraff for suitably applying impulsive forces to systems with
_ /2 2,1 dynamic friction. As a result, we can unify our treatment of both
Ifril = (£ + 1) < pfn (22 dynamic and static friction in a single algorithm. We note in closing
is a nonlinear constraint. However, this constraint is easily dealt that we feel that this is mostly a theoretical, and not a practical
with by our algorithm. In place of the two selC~ and NCT, concern, because we have encountered this infinite driving mostly
for three-dimensional systems, we use a singleN&t In two in situations where, has been made unrealistically large.

30

SIGGRAPH 94, Orlando, July 24-29

CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

7. Results

Our method for computing contact and friction forces is both
reliable and fast. Like most pivoting algorithms (for example, the
simplex algorithm for linear programming), worst-case problems
resulting in exponential running times can be constructed. Empiri-
cally however, the algorithm appears to require alt(u) calls to
drive-to-zerdor systems with and without friction. Our real interest
however is the performance of the algorithm in actual practice.

We have implemented the two-dimensional algorithm for static
friction in an interactive setting and the three-dimensional algorithm
in an offline simulation system. For frictionless systems, our so-
lution algorithm compares favorably to Gaussian elimination with
partial pivoting. Given a matriA and vectorb, the algorithm of
section 4 takesnlytwo to three times longer to compute the contact
forces than it would take to solve the linear systém= b, using

a—LLhlyLy'lule

T
o — L12L12.

From equation (25) we have= L],L12 + L3,; thus

ViX+a=a—Lli=L3. (26)
Sincel 2, is positive,vix + « is positive. O

Almost the same result applies wharis not invertible. In this
case A1 may be singular; note however that a Cholesky factoriza-
tion can still be obtained althoughi may now be singular. Since it
is still the case thah1; = L11L1;, andL1; andL ;L 1; have exactly
the same column space, the fact that= L 11L 12 implies thatv; is
in the column space dki11. Thus, the equatioA11x = —v; will
always have a solution. Using basic continuity principiesan be

Gaussian elimination. Compared with the best QP methods we Shown that in the singular casgx + a > 0.

know of, our algorithm runs five to ten times faster, on problems up
to sizen = 150. For systems with friction, there is no comparable
solution algorithm we can compare our algorithm to.

Interactive simulations of 2D mechanisms are shown in fig-

ures 1 and 2. Fixed objects are colored in black. Objects in different PROOF.

THEOREM 3 During a given call to drive-to-zero, the same index
set C is never repeated.

Suppose some index setvas repeated during a call to

“levels” are different colors (orange, purple, and green) and have drive-to-zero SinceCUNCremains constant during a given invoca-

no collision interaction. White circles indicate a bilateral point-

to-point constraint. In figure 2, the green circles indicate contact
points.
framerate of 20—30Hz on an SGI R4400 workstation.

Acknowledgements

This research was funded in part by an NSF Research Initiation

Award and an AT&T Foundation Equipment Grant. We would
like to sincerely thank Michael Saunders and Richard Cottle for
supplying us with a dense version of thed0L package and for
clarifying several technical and historical points about LCP’s.

Appendix A: Theorems

tion of drive-to-zerg(except at the last step, where the driving index
d is added tcC), wheneverC is repeatedNC is repeated as well.

Both systems can be simulated robustly at a consistentLet the values of the first time and second tin@is encountered

be denoted® and f(? respectively. Lea® = Af® + b and
a® = Af® 4 b. The intuition of the proof is simple: if the
algorithm could have increasgdalong a straight line fronf(®
to £, it would have done so. The fact that it did not means that
increasing fronf™® to f® must have required a change betw€en
andNC. We show that this cannot happen because of the inherent
convexity involved, contradicting the fact tHatwas repeated.
Specifically, we have™ = a® = 0 foralli € Canda™ > 0
anda® > 0 foralli € NC. GivenC andNC, the vectorf is
increased in the directioA f whereAfi = 0fori € NC, Afqg=1
andAa = 0 fori € C. However, the vector

In this appendix, we prove some theorems necessary to show that

the algorithm for frictionless contact forces in section 4 terminates.
For simplicity, we consider only the case wh&is nonsingular and
sketch the modifications necessarpifs singular.

THEOREM 2 Let the symmetric positive definite matfixbe par-
titioned as in equatior{7). If x satisfiesA11xx = —vi, then the
quantityvix + « is always positive.

PROOF. Principal submatrices @f are positive definite, s@ > 0,
A1 is positive definite and the submatrix

(%)

is positive definite. Applying a Cholesky factorization, we can

T o)) e

whereL 11 andL 12 have the same dimensionsAss andv; respec-
tively, andL », is a positive scalar. Note that sinég; = Ll],
is invertible, L1 is also invertible andA;;* = Lp'L;" From
equation (25), we have; = L1iL12. SinceAnix = —vi, we also
havex = —AL;'vi. Then

An
vi

Vi
[0

An
vi

0
L2

Vi
«

L1

T

Lll

LT
12

0

Li2
L2z

a—ViAL'v
o — (LIL1)AL (Lul 1)

VIX-I-a

31

f(2) _ f(l)
N 0

fulfills all the conditions forAf, sinceys = 1,yi = 0 fori € NC,
and the vector

A(f(Z) — f(l)) a® — g
fl(jz) _ fl(jl) fl(jz) _ fl(jl)

has itsith component equal to zero for ak C. Thus, wherC was

first encounteredAf = y was chosen. l&g = 0 could have been
achieved by increasingin this directiondrive-to-zerovould have
terminated, an€ would not have been repeated. This means that
inincreasing fronf® in the directiorA f =y, it was necessary to
changeC andNC prior to reachingf?; that is for some valuein

the range < t < 1, either

(28)

(A(f(l) —}—t(f(z) _ f(l))) + b)j <0 (29)
for somej € NCor
(FY +1(f® - D)), <0 (30)

for somej € C. However, since neither of the above two equations
are satisfied wheh= 0 ort = 1, and the equations involve only

4If A is a symmetric PSD singular matrix, then there exist arbitrarily small
perturbation matricessuch thatA + ¢ is symmetric positive definite (and
hence nonsingular).

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

linear relations and inequalities, by convexity, neither of the two Substituting from equations (35) and (33), we have
above equations are satisfied for any value<Ot < 1. This

Tp—1
contradicts the assumption that the sameGetas encountered Aa = wB z—c
twice during a call ofirive-to-zero © = —wB'wy—jgy (37)
This theorem also extends to the algorithm for static friction in — _yw'B 'w+g).

section 5. Namely, we claim that the index s€tNC, Cg, NC™

andNC" are never repeated while driving a given force variable SinceAy; is positive definite B~ is positive definite, and is

fng O frq. The proof is exactly the same, the only difference being positive, sow™B~*w + 8 must be positive. Sincg is negative,
that extra conditions of the foriA fr; = A fn; may be present. —vyis positive, and we conclude thag, > 0. O

However, given thaf® andf(® satisfy these extra conditions, any This theorem extends immediately to the case whasingular,
vectorf(1)+t(f(2)—f(l)) for 0 < t < 1 will satisfy these properties because the index se€ encountered never produce a singular
as well. Again, this means that the algorithm should have gone submatrixA;.

directly from f" to f®, contradicting the fact that the index sets THEOREM 5 Ina nondegenerate problem, when an index i moves

were repeated. .) from NC to C, fimmediately increases.
The last two theorems guarantee that the frictionless algorithm

never takes steps of size zero, as long as the system is not degene
ate. Adegenerate probleifmot to be confused witA being singu-
lar) is one that would require the algorithm to to make two or more
changes in the index se®andNC at exactly the same time (for
example, if two normal forces decreased to zero simultaneously). References
When degeneracy occurs, it is possible that some number of size
zero steps are taken. Cottle[5, section 4.2, pages 248-251] proves] - A .
that the frictionless algorithm cannot loop due to degeneracy. g?(gg;&eptstmcﬁ rrlgédzgodlgsésg?pzu;gr féah;)h‘;c?P;%Cég
Proving that a nondegenerate problem never takes steps of size » volu »pag) »ouly "
zero is relatively straightforward. We need to show that whenever [2] D.Baraff. Curved surfaces and coherence for non-penetrating

EROOF. The proof is constructed in the same way as the proof of
the previous theoremo

[1] D. Baraff. Analytical methods for dynamic simulation of

i € C moves toNC, a immediately increases. As a resiltannot rigid body simulation. InComputer GraphicgProc. SIG-
immediately move back t6 without taking a step of nonzero size. GRAPH), volume 24, pages 19-28. ACM, August 1990.
Similarly, we need to show that whenevuee NC moves toC, f; [3] D. Baraff. Issues in computing contact forces for non-
immediately increases. penetrating rigid bodiesAlgorithmica 10:292-352, 1993.
. . [4] R.W. Cottle and G.B. Dantzig. Complementary pivot theory

THEOREM 4 In.a nondegengrate problem, when an index i moves of mathematical programmindinear Algebra and its Appli-
from C to NC, aimmediately increases. cations 1:103-125, 1968.

)) [5] R.W. Cottle, J.S. Pang, and R.E. Storkhe Linear Comple-
PROOF. Without loss of generality, &€ = {1,2,...,k — 1} and mentarity ProblemAcademic-Press, Inc., 1992.
let us assume that tHeh contact has just moved fro@ to NC. [6] P. Gill, S. Hammarling, W. Murray, M. Saunders, and

Whenk was still in C, we computedA f; by solving the system

Aux = —vi and settingAf, = x. Let Az andx be partitioned M. Wright. User’s guide for LSSOL: A Fortran package

b for constrained linear least-squares and convex quadratic pro-
y gramming. Technical Report Sol 86-1, Systems Optimiza-
tion Laboratory, Department of Operations Research, Stanford
AuX = < V?T ‘g > (u > — < z) = v (31) University, 1986.
y [7] P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide
(k= 1) (k1) ‘ for QPSOL: A Fortran package for quadratic programming.
whereB € R ,u,w,z € R®andy, 3, andc are scalars. Technical Report Sol 84-6, Systems Optimization Labora-
This yields tory, Department of Operations Research, Stanford University,
1984.

[8] P.Gill, W. Murray, M. Saunders, and M. Wright. User’s guide
for NPSOL: A Fortran package for nonlinear programming.

Cc

u=B*z-wy) and wu=c—gy (32

or
Th-1 _ Technical Report Sol 86-2, Systems Optimization Labora-
B — =c—py. 33 : . .
W (z—wy) By (33 tory, Department of Operations Research, Stanford University,
Since thisAf causedfy to decrease to zerd\fx = y must have 1986.
been negative. [9] P.E.Gill, W. Murray, M.A. Saunders, and H.W. Wright. Main-
Oncek moves intoNC and we recomputé f, we need to show taining LU factors of a general sparse mattiinear Algebra
the newAa will be positive. Letl andy denote the new values and its Applications88/89:239-270, 1987.
computed fou andy when we resalve foAf. Sincek is now in [10] P. Lotstedt. Numerical simulation of time-dependent contact

NC, we setAfi = § =0, and solve friction problems in rigid body mechanic&IAM Journal of

Scientific Statistical Computing(2):370-393, 1984.

BU+wy=z (34
[11] R.E. Marsten. The design of the XMP linear program-
to obtain ming library. ACM Transactions on Mathematical Software
a=B"'z (35) 7(4):481-497, 1981.

[12] B. Murtagh and M. Saunders. MINOS 5.1 User’s guide.
Technical Report Sol 83-20R, Systems Optimization Labora-
tory, Department of Operations Research, Stanford University,
1987.

[13] M. Saunders. Personal communication. September 1993.

From equations (8) and (31), the néve is

Aay=wa+py—c=w'a—c (36)

32

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

©

(b)
€

@
(d)

Figure 1: Time-lapse simulation sequence of a blockfeeder.

33

SIGGRAPH 94, Orlando, July 24-29 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

Figure 2: Time-lapse simulation sequence of a double-action jack.

34

